
DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 1

Decentralized Storage Network based on
Blockchain Technology: A Survey

Qi Xiang Zhang
Institute of Information Management,

National Yang Ming Chiao Tung University, Taiwan

Abstract—When we explore the application of blockchain
technology in decentralized storage networks (DSN), we will
examine three papers from the IEEE Transactions journal in
sequence. Each of these papers proposes their own solutions for
DSN. DSN is favored because it offers many advantages over
centralized storage networks. One significant advantage is the
ability to avoid the issue of data inaccessibility caused by a
single point of failure. Moreover, the three main characteristics
of blockchain—decentralization, immutability, and high trans-
parency—help address the issues that have arisen in centralized
storage networks. Additionally, the application of smart contracts
on blockchain simplifies the management of distributed nodes and
can automatically reward honest storage nodes while eliminating
and penalizing dishonest ones. In these three papers, we will see
the importance of game theory in blockchain-based decentralized
services, and the authors will present their respective solutions
to the previously cumbersome storage verification mechanisms
(PoS). Let us delve deeper into this topic in this survey paper!

Index Terms—Distributed Systems, Blockchain, Smart Con-
tract, InterPlanetary File System (IPFS), Game Theory, Decen-
tralized Storage Network (DSN), Proof of Storage (PoS).

I. INTRODUCTION

IN many past research papers, we have seen the limitations
of centralized storage systems, such as their vulnerability

to single points of failure, the misuse of customer data by
a few centralized storage service providers, and the monop-
olistic control over pricing and regulations by a handful of
central storage service companies. As a possible solution,
decentralized storage networks (DSNs) have been proposed.
These networks allow small-scale storage service providers
to participate in the market and use blockchain technology
to store file information. They also employ smart contracts
deployed on the blockchain to automatically move files and
assets according to predefined rules.

Currently, experts in the field of decentralized storage
networks are exploring various methods to disrupt the existing
cloud storage service market through DSNs. First, these de-
centralized storage networks are likely to operate on the basis
of a free market open to public participation. Thus, anyone
can join the DSN without relying on a single node or storage
service provider, with data replicated across multiple nodes.
Moreover, public key encryption is a natural feature integrated
with blockchain. Servers typically encrypt data before storage,
ensuring that only the legitimate private key holders and their
approved clients can decrypt the data. This process makes

decentralized storage services more resistant to censorship and
manipulation. Even in the event of a data breach, attackers
would be unable to exploit the leaked data without the private
key.

Using decentralized networks to store data as an alterna-
tive to traditional centralized storage networks, peer-to-peer
storage is emerging as a disruptive force. Below are some
advantages of storage systems that adopt decentralized storage
networks [4]:

1) High Reliability: Decentralized networks use multiple
servers to transmit and store data. Redundant copies of
data are stored, eliminating the impact of single points
of failure. In the event of hardware failures or file loss,
backup copies of files will be accessible. Additionally,
each piece of shared data is assigned a unique hash
value. This added layer of protection makes the data
more secure.

2) Low Deployment Cost: Decentralized data storage sys-
tems significantly reduce hardware and storage costs.
In a decentralized environment, the performance re-
quirements for storage nodes are lower, reducing the
need for expensive investments in high-performance
hardware and software. Moreover, there may be millions
of nodes in a decentralized network storing data, which
greatly increases available storage space. Decentralized
storage systems can continually utilize all idle storage
space, reducing waste and avoiding the need to invest
in new storage equipment. Overall storage costs are
significantly lower compared to traditional centralized
cloud storage.

3) Increased File Access Speed: Unlike traditional cen-
tralized storage, decentralized storage systems rely on
peer-to-peer technology. During peak traffic times, data
transfer is not conducted through a single central server.
Multiple copies of data are stored at different node
locations, allowing clients to choose nodes with data
copies, thereby speeding up overall file download times.

4) Load Balancing: Blockchain-based decentralized stor-
age systems follow load balancing principles. Servers
can locally cache data to avoid repeatedly accessing the
server. This not only reduces the burden on servers but
also alleviates network traffic pressure. In addition to
transferring and optimizing data, non-centralized servers
help eliminate bottlenecks created by centralized storage
systems.



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 2

5) Fair Market Pricing: With millions of nodes, decen-
tralized storage systems form a fully competitive market
where micro-storage service providers can compete with
larger companies. A single node cannot charge higher
prices in a fully competitive storage service market,
resulting in uniformly distributed prices across all nodes
with minimal price discrepancies. Most importantly, this
market ensures that only high-quality nodes can survive
and compete.

6) Enhanced Security and Privacy: The high security
offered by decentralized data storage systems is their
most notable advantage. Shared data is encrypted using
hash values or public-private keys and broken down into
smaller blocks, which are then shared among nodes in
the distributed network. This process ensures that data
is protected from malicious attackers. Additionally, none
of the stored data contains information about the original
data owners, which is different from centralized storage
systems.

Despite the numerous advantages of decentralized storage
networks (DSNs) highlighted above, these networks are also
susceptible to various malicious attacks that can impact any
decentralized storage system. Below are some possible mali-
cious attacks on DSNs and their corresponding solutions [4]:

1) Spartacus Attack: On Kademlia (a distributed hash
table (DHT) technology used for storing and retrieving
data in distributed networks), Spartacus attacks, also
known as identity theft, can occur. Any node can im-
personate another node by replicating its node ID and
receive certain information intended for that node. To
mitigate this attack, all messages for nodes and data can
be required to be signed, with node IDs implemented
as hashed ECDSA public keys. This prevents malicious
actors from successfully signing information or partici-
pating in decentralized storage systems.

2) Sybil Attack: The Sybil attack involves setting up
numerous nodes to disrupt the entire network by drop-
ping or stealing messages. Conducting such attacks on
Kademlia is challenging due to its reliance on redundant
messaging and specific distance metrics. Most messages
are sent to at least three neighboring nodes in the
network, which are selected based on their node IDs.
When attackers control 50

3) Google Attack: This hypothetical attack is conducted by
a well-resourced entity, similar to the Sybil attack. It’s
challenging to defend against Google attacks due to the
unpredictability of Google’s actions. The only defense is
to create a network with resources comparable to those
of the malicious attacker. Establishing such a network
aims to match the adversary’s capabilities, but it requires
significant resources, which may not be sustainable.

4) Honest GEPPETTO Attack: A variant of the Google
attack, Honest GEPPETTO targets storage devices. Ma-
licious actors operate numerous puppet nodes in the net-
work over time to accumulate trust and valid contracts.
Once a threshold is reached, attackers remove or manip-
ulate these puppet nodes from the network to execute

data withholding attacks. Similar to previous attacks,
a large-scale network renders such attacks ineffective.
Prior to this, relevance analysis of nodes can partially
address this issue. When downtime, latency, and other
attributes are applied to Bayesian inference, data owners
should distribute data across as many unrelated nodes as
possible.

5) Eclipse Attack: Eclipse attacks isolate one or more
nodes in the network by ensuring all outbound traffic
connects to malicious nodes. Eclipse attacks may induce
malicious nodes to operate normally while only obscur-
ing specific critical messages. Attackers need to generate
key pairs until finding three hashes that are closer to the
target ID than the IDs of neighboring honest nodes and
protect this position from attacks by nodes with closer
IDs. In practice, there are typically many nodes in the
network, making such attacks increasingly difficult as
nodes increase, scaling with the difficulty of the proof-
of-work problem. Therefore, to defend against Eclipse
attacks, the total number of nodes in the network should
be increased.

6) Data Segment Withholding Attack: Attacks specific to
storage, like data segment withholding attacks, involve
malicious storage service providers refusing to transmit
data segments or segment parts to extort additional
payments from data owners. Data owners can protect
themselves from data segment withholding attacks by
storing redundant segments among multiple nodes. If
clients maintain their erasure coding secret, malicious
storage service provider nodes cannot determine the last
byte. Practical applications of this attack are mostly
resolved through redundant storage. However, redundant
storage is not a complete solution. Multiple malicious
nodes must collaborate to break the defense of redundant
storage, which is challenging in practice.

7) Owner Fraud Attack: Data owners may refuse to verify
the authenticity of audits to avoid paying storage fees
to storage service providers. Storage service provider
nodes may then discard data segments of the data
owner. Due to such attacks, any future decentralized
reputation system will struggle to verify its reputation.
Currently, there are no publicly verifiable storage proofs
or independently verifiable processes to confirm whether
planned private verifiable audits are sent or responded
to. Therefore, any reputation system still faces the issue
of fraudulent clients.

In the following paragraph, I will first briefly explain some
important Related Work that will be mentioned in the three
IEEE Transactions journal papers. Then, I will divide the
content into three paragraphs to respectively introduce the
important content summaries of these three journal papers,
as well as some insights I gained after reading them. Finally,
I will provide a brief conclusion regarding the research topic
of this study.

II. RELATED WORK

In this paragraph, I will provide a summary of the key
content in these three IEEE Transactions journal papers. The



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 3

focus will primarily be on blockchain, smart contracts, and the
InterPlanetary File System (IPFS). Other related technologies
mentioned in these papers will not be introduced here. For
those interested in technical details, please refer to the six
referenced papers in the References section.

• Blockchain [5]: Blockchain technology is based on P2P
network. Blockchain is a decentralized ledger record-
ing transactions, hence, no central supervisory authority
exists. Each node in the blockchain network regularly
synchronizes the distributed ledger. Cryptography is uti-
lized in blockchain to enhance its security. Blockchain
employs cryptographic hash mechanism, making data
stored in blocks immutable. If data in one block is
altered, then data in each subsequent block should be
recalculated with new hash value, which is practically
unfeasible. Immutability is one of the fundamental appli-
cations of blockchain. Blockchain supports transparent
and immutable transactions, which are easily monitored.
Additionally, blockchain can be categorized into several
types, including public, private, or consortium chains.
Bitcoin is a prominent example of a public blockchain
where anyone can mine, transact, and join the network.
In a private blockchain, one organization is responsible
for governing transactions and determining who can join
the network. When multiple organizations collaborate to
implement blockchain, the responsibility of maintaining
the blockchain is shared among them, known as a con-
sortium blockchain.

• Smart Contract [6]: Ethereum is one of the prominent
branches of blockchain, and a significant component
of Ethereum is smart contracts. Smart contracts have
become increasingly popular, especially with the recent
boom in non-fungible tokens (NFTs), which are issued
through smart contracts. They were first proposed by
computer scientist and cryptographer Nick Szabo in the
early 1990s as a form of digital transaction protocol.
Smart contracts explain how users can input data or
value and perform restricted operations on machines (for
example, a vending machine). In simple terms, smart
contracts are typically user programs, algorithms, or
protocols that can be used to verify, validate, or execute
irreversible transactions. This represents a clear paradigm
shift, where dishonest organizations seek to gain trust
in their agreements to ensure the proper functioning of
computer systems. A well-executed smart contract can
enable crowdfunding without the need for third-party
intervention. Third-party involvement often centralizes
the system, concentrating all trust in one organization.
Since smart contracts deployed on the blockchain are
immutable, transparent, and authoritative, disrupting their
execution is nearly impossible. The largest blockchain
branch, Ethereum, has been supporting specially designed
smart contracts since 2014. Solidity is one of the pro-
gramming languages specifically popular for developing
smart contracts on Ethereum. In recent years, trans-
boundary insecure programming crimes have resulted
in significant economic losses and social deterioration,

posing challenges for the proper development, validation,
and execution of smart contracts.

• InterPlanetary File System (IPFS) [5]: IPFS (InterPlan-
etary File System) is a file storage system distributed
across multiple computers or servers. It addresses secu-
rity, reliability, and scalability issues present in existing
file storage systems. IPFS provides high throughput for
accessing stored files. In the mining process, the previous
hash value is added to the new block, and the miner
who first calculates the block hash shares it with other
blockchain nodes. Subsequently, other nodes verify the
authenticity of the block mined by that miner. In practice,
image files are stored in the IPFS distributed file system
using the IPFS API. The SHA-256 algorithm is used to
generate the hash value, and a salting procedure is utilized
to convert the message digest into hexadecimal format.
The message digest (MD) and hash value are combined to
form a hash of the content address, which is then stored
in the blockchain network. IPFS generates a 46-byte long
hash value, resulting in less storage space consumption
compared to traditional file storage systems. In this
proposed system, miners collect transactions, mine valid
ones, and store them in the IPFS distributed network,
then generate new blocks in the blockchain network.
IPFS provides a unique hash value for stored transactions,
allowing other nodes to access the transactions using this
unique hash value.

III. AN INCENTIVE-COMPATIBLE MECHANISM FOR
DECENTRALIZED STORAGE NETWORK [1]

A. Introduction

• Concerns with the centralized architecture of storage
service providers:

– Data centers are more susceptible to single points of
failure.

– Companies may misuse customers’ personal data for
greater profits.

– Prices and regulations are dominated by a few large
companies, leading to monopolies.

• Decentralized Storage Network (DSN) - Advantages:
– Small-scale storage service providers can also par-

ticipate in the storage service market.
– Information is stored across a network of computers

(blockchain technology).
– Various incentive mechanisms can be developed us-

ing blockchain smart contracts, which automatically
move digital assets according to predefined rules.

– Customers can outsource their data storage by paying
fees to the network.

– Storage service providers share their storage re-
sources with the network and receive additional
rewards in return.

– To ensure data confidentiality, customers’ data is
encrypted end-to-end on the client side, preventing
storage service providers from accessing the decryp-
tion keys (eliminating centralized control of data).



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 4

– Small-scale storage service providers can rent out
their excess storage resources, increasing network
throughput and reducing maintenance costs for data
centers.

• Decentralized Storage Network (DSN) - Challenges:
– How to verify the correct storage of data by storage

service providers?
– A DSN platform should be equipped with a Proof

of Storage (PoS) method to monitor the honesty of
storage service providers (PoS should be performed
periodically during the storage service contract).

– However, continuous PoS verification is costly and
vulnerable to attacks by malicious storage service
providers who submit PoS to DSN nodes while
refusing to serve customers.

• Decentralized Storage Network (DSN) - Improve-
ments:

– In this paper, the authors propose and analyze a new
decentralized storage method that does not require
constant storage verification, but only a one-time ver-
ification when challenged by customers (challenge
request).

– The authors also designed a new incentive-
compatible mechanism, enabling participants to
achieve optimal results by truthfully choosing their
actions.

– More specifically, the authors designed a non-
cooperative repeated dynamic game where the only
subgame perfect equilibrium is for storage service
providers to honestly share the stored data.

– The authors enforce the rules of the proposed storage
game using blockchain smart contracts and an oracle
network. Eliminating continuous storage verification
significantly improves DSN performance and pro-
tects customers from denial-of-service attacks.

B. Overview

In summary, the decentralized storage network (DSN) is
equipped with two main components: payment settlement and
storage verification:

• In the payment settlement module, the DSN charges cus-
tomers for storage services and pays the storage service
providers. If a storage service provider fails to deliver
the storage services, the DSN can penalize them and
compensate the customers accordingly.

• In the verification module, the DSN verifies whether the
storage service providers accurately provide the storage
services. To achieve this, storage service providers are
required to submit proof of storage to the DSN, which
then verifies the accuracy of such proof.

DSN utilizes public blockchain technology to execute stor-
age contracts. Blockchain technology provides an acceptable
platform for parties to make payments without the need for a
single trusted third party. Therefore, in a blockchain-enabled
DSN scheme, no single party can control any storage contract.
In DSN storage services, customers may encrypt their data

before submitting it to the storage service provider to protect
the confidentiality of the data. Additionally, DSN can provide
redundancy, high availability, and failover capabilities by stor-
ing data across multiple nodes in the network. The authors
assume that storage service providers manage their storage
resources, including redundancy, server location, backup ser-
vices, network bandwidth, etc., to maximize their returns
according to the Service Level Agreement (SLA). The overall
approach of a blockchain-based DSN is illustrated in Figure
1, where clients request data storage services from storage
service providers. Subsequently, related storage payments and
service verifications can be performed through smart contracts
deployed on the blockchain.

Fig. 1: Image Source from [1]

Mechanism Design Objectives:
• Blockchain Platform Independence: Propose a compat-

ible storage solution that can be integrated into existing
general-purpose blockchain platforms with smart contract
execution compatibility.

• Prevention of Denial of Service Attacks: Protect
the DSN network from such fraudulent storage service
providers.

• On-Chain Efficiency: The proposed solution should min-
imize on-chain storage and computation costs without
compromising security expectations.

• Computation Requests: Many storage services expect to
calculate the number of customer requests to dynamically
compute the cost of storage services.

C. Proposed Incentive-Compatible Mechanism

The authors’ mechanism design aims to establish a set
of rules for storage services in DSN to meet the previously
mentioned requirements. A mechanism can be specified by a
game g : M→ X, where M is the set of possible input messages
and X is the set of possible outputs of the mechanism. In
the storage system model, the players are the storage service
providers and the storage-demanding customers. The authors
assume that players are rational and self-interested, with the
goal of maximizing their profits. A rational player will choose
a specific strategy to increase their utility. The utility of storage
customer players is based on the cost of paying for storage
services and the cost or benefit of data accessibility after
outsourcing storage to storage service providers.

When designing mechanisms for decentralized storage net-
works, the following questions need to be addressed:



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 5

• How does the mechanism verify the honesty of storage
service providers in sharing data?

• What is the payment channel for storage data services?
• How should the mechanism charge customers?
• How should the mechanism penalize storage service

providers for data loss or poor service quality?
A straightforward model involves using a Trusted Third

Party (TTP) to mediate the relationship between customers
and storage service providers. In this scenario, the customer
requests data from the TTP, which then receives the data from
the storage service provider. The TTP can check the data
integrity using the hash value of the stored data and verify it
upon receiving it from the storage service provider. However,
this method is inefficient, costly, and non-scalable due to the
necessity of the TTP acting as an intermediary for each request
and response.

To address this issue, Decentralized Storage Networks
(DSNs) rely on blockchain platforms as a trusted third party,
eliminating the need for a single central entity to manage
the system. Additionally, DSNs minimize the involvement of
the trusted third party in the data retrieval process, allowing
customers to retrieve data directly from the storage service
providers. However, decentralized storage networks continu-
ously verify the storage proofs provided by storage service
providers to ensure that they are genuinely storing the data:

• For the network, continuous verification of storage is
expensive.

• Dishonest storage service providers can successfully sub-
mit storage proofs to decentralized storage networks
while refusing to provide services to customers.

To address these issues, in the model proposed by the
authors, decentralized storage networks do not continuously
verify storage services. Instead, verification occurs when a
client submits a challenge request. (When dishonest storage
service providers refuse to provide data or send incorrect data,
clients can send challenge requests to a trusted third party.)
In the mechanism proposed by the authors, the interaction
between clients and storage service providers can be modeled
as a non-cooperative repeated dynamic game:

• Once the storage service contract begins, in the first stage
of the game, the storage service provider can choose a
strategy of sharing data or not sharing data.

• Clients can choose to challenge or not challenge the
storage service provider. Challenging means the client
submits a challenge request to the DSN, indicating that
the storage service provider has not shared the data.

• Upon receiving the challenge request, the DSN performs
storage verification. Once the storage service provider is
challenged, their strategy set is to provide storage proof
or not provide storage proof.

The goal of the authors’ mechanism design is to ensure
that the subgame perfect equilibrium of this non-cooperative
repeated dynamic game is achieved (where the storage service
provider is willing to share data, and the client does not
challenge the storage service provider’s storage proof). The
storage contract between the client and the storage service
provider can be represented as the non-cooperative repeated

dynamic game depicted in the diagram below. In this game,
the storage service provider can choose whether to share data,
and the client can choose whether to challenge the storage
service provider. The nodes S and C at the terminal of the tree
represent the payoff obtained by the storage service provider
and the client from the game, respectively, and this payoff
is calculated based on the utility function according to the
strategies adopted by both parties.

Fig. 2: Image Source from [1]

Fig. 3: Calculate the player’s utility

Therefore, the authors aim for the storage service provider to
choose Sharing when data is not shared, and the client should
choose Challenging when data is not shared. To achieve this
goal, the mechanism should incentivize the client to choose
to challenge when data is not shared; however, challenging
requests are costly. To cover the cost of challenging, the
proposed mechanism is designed such that the proof strategy
mandates sending a copy of the data to the client to enhance
the payoff of the challenging strategy when data is not shared.
Let P represent the probability that the storage service provider
cannot provide storage service. Let V represent the value of
the client accessing the data. Then, the expected utility of the
client choosing to challenge can be represented by the equation
below.

Fig. 4: Client’s challenge cost

The following figure illustrates the payoffs obtained by
the two participants in the non-cooperative dynamic game
under each other’s strategy choices. The equilibrium point of
the game is at ”share-nochallenge,” where the total payoff is
maximized.

The authors utilize smart contracts as a trusted third party
to manage the agreements between clients and storage ser-
vice providers. Smart contracts are powered by blockchain



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 6

Fig. 5: Image source from [1]

technology, which is managed by a peer-to-peer network
governing a digital ledger. In the proposed model, clients and
storage service providers first reach a storage agreement. This
agreement includes information such as the contract duration,
the Merkle root of the data, the storage service fee, data
delivery time, and compensation. The Merkle root of the
data is stored on the blockchain and will be used for data
verification. Storing the entire data on the blockchain is costly,
so a Merkle tree is used to minimize the cost of the storage
verification process.

One thing to note is that the blockchain platform operates
as an isolated network and cannot extract or push data from
external systems. This issue is known as the Oracle problem.
To address this challenge, the concept of an Oracle network
is introduced. The Oracle network provides a trusted source
for the blockchain to access data outside of its network.
The interaction between different components in the method
proposed by the authors is illustrated in the diagram below.
It can be observed that data transmission occurs off-chain.
The only on-chain operation is the challenge request. It is
noteworthy that, in this approach, the storage service provider
should send the challenged data to the Oracle network, which
then forwards the data to the client. This design serves two
primary purposes. Firstly, it prevents the service denial attacks
explained earlier. This is because if a storage service provider
refuses to serve a client, the client will receive a copy of the
data in the challenge request if the storage service provider can
provide proof. Therefore, the storage service provider cannot
refuse service to the client while proving storage to the DSN.
Secondly, when the storage service provider has not yet shared
the data, the mechanism should incentivize the client to submit
challenges. By forwarding the data, the authors increase the
value of the payoff for clients who choose the challenging
strategy, achieving the expected subgame perfect equilibrium
discussed earlier.

Data transmission is completed off-chain. The only on-chain
operation is the challenge request. It’s worth noting that in
this approach, the storage service provider should send the
challenged data to the Oracle network, which then forwards
the data to the client. This design serves two primary purposes:

• Preventing service denial attacks: The storage service
provider cannot refuse to provide service to the client
while proving storage to the DSN.

• When the storage service provider has not yet shared the

Fig. 6: Image source from [1]

data, the mechanism should provide incentives for the
client to submit challenges.

To enhance the efficiency of the method, the authors con-
sidered different levels of challenge requests. They propose
that when the client and storage service provider agree to
divide the data into a specific number of segments, during
the challenge phase, the client can submit a challenge for
a group of segments. Rather than requiring verification of
the completeness of the entire data when the client perceives
incomplete data, they can selectively verify specific data
segments, thereby improving the overall efficiency of the DSN.

Given the security parameter λ, the PoS method consists of
a set of four probabilistic polynomial-time (PPT) algorithms,
including Setup, Challenge, Prove, and Verify, as presented
below:

• (d, h) ← Setup(1λ, D, sz). This algorithm takes the
security parameter λ, outsourced data D, and segment size
sz as inputs. It outputs the data digest d for verification
and the maximum number of data segments h.

• c ← Challenge(h). This algorithm takes the maximum
number of data segments h as input and outputs the
challenge number c.

• π ← Prove(Dc, c). This algorithm takes the corre-
sponding data segment Dc and challenge number c as
inputs. It outputs the proof π for the data segment stored
corresponding to the challenge number c.

• 0/1 ← Verify(d, h, c, π). This algorithm takes the data
digest d, Merkle Tree height h, challenge number c, and
proof π as inputs. If the proof π is valid, it outputs 1;
otherwise, it outputs 0.

The first property that the authors require from the PoS
method is completeness, which means that the probability
that the proof output by the algorithm for a valid statement
is correctly verified is negligibly close to one. This can be
expressed by the following equation, and if a PoS method is
complete, it will satisfy the following condition:

Fig. 7: Image source from [1]



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 7

The second property is challenge statement, which captures
that a malicious challenger cannot generate a challenge c even
if the prover holds the entire document. It can be expressed
by the following equation, and if a PoS method is challenge
statement, it will satisfy the following condition:

Fig. 8: Image source from [1]

The third property is proof statement, which captures that
even with all other document segments, a malicious storage
prover cannot generate a valid proof if it does not hold the
challenged document segment. It can be expressed by the
following equation, and if a PoS method is proof statement,
it will satisfy the following condition:

Fig. 9: Image source from [1]

Cryptographic Building Blocks: The author utilizes an
encryption-secure hash function H ← Hash(X) with colli-
sion resistance and difficult-to-reverse computation. Digital
Signatures: The author employs a standard EU-CMA secure
digital signature function, consisting of three functions: one
for generating public and private keys, one for signing, and
one for verifying the validity of the signature.

• (pk, sk) ← KeyGen(1λ)
• σ ← Sign(sk, m)
• 1/0 ← Verify(pk, m, σ)
Integrity comes directly from the protocol. The assertiveness

of challenges arises from the maximum number of challenges
verified in the setting function. The assertiveness of proofs
comes from the hash value being a hash function resistant to
collisions and having recovery difficulty. Obviously, if there is
an adversary undermining the assertiveness of proofs, authors
would use this adversary to undermine the collision resistance
of the hash value, contradicting the assumption. The following
figure is a simple example of a Merkle tree:

Fig. 10: Image source from [1]

There are two main reasons why the authors chose Merkle
trees to construct their proof-of-stake (PoS) based system:

• In a decentralized setting, the authors aimed for trustless
setups and fewer common parameters, which limits the
use of RSA and bilinear pairing-based solutions.

• Costs of both proving and verifying were considered in
the incentive layer. The primary concern of the proposed
method was the size of the digest data, as this data needs
to be stored on-chain.

• At this point, Merkle trees emerged as a viable solution,
as authors only need to store the Merkle root on-chain,
which is a hash value.

However, due to the potential for malicious storage ser-
vice providers to refuse data delivery, clients should send a
signature confirmation message after successful data delivery.
On the other hand, malicious clients may also refuse to send
signature confirmation messages:

• To address this issue, a straightforward approach is to
segment the data into smaller segments and send the
next portion of data after receiving confirmation of the
previous message.

At the application layer, this method incurs high costs
because each confirmation message should be signed and
verified. Additionally, there is no guarantee that the client will
send confirmation of the last message.

• To solve this problem, a simple approach is employed.
In the proposed method, authors follow the proposed
non-cooperative repeated dynamic game theory approach
to challenge storage service providers. In the proposed
model, clients only send a signed request message.

• For keeping track of the number of requests, storage
service providers only need to submit the last signed re-
quest message. It’s worth noting that the request message
includes a counter, recording the number of requests the
client has submitted so far.

D. Implementation

The authors implemented the proposed smart contract using
the Solidity programming language (version 0.8.7). For the
blockchain solution, they chose Kovan, which is Ethereum’s
test network, used for smart contract development. The authors
utilized the Remix IDE for the development, deployment,
and management of smart contracts. During implementation,
they employed Chainlink’s Oracle, the most renowned Oracle
network currently dominating most of the Oracle market, and
they have shared their implementation on GitHub. Considering
gas fees and the expensive on-chain computation costs, the
authors only recorded basic information on-chain, including
smart contract premiums, contract terms, compensation rates,
and the Merkle root value of files.

The smart contract has two primary functions:
• Recording storage tasks: After reaching a commitment

between the client and storage service provider, the
contract records the signed basic information of both
parties on-chain, based on the designed data structure.

• Resolving challenge requests: Once a client submits an
on-chain request challenging a specific file segment, the
authors need to establish a connection with off-chain data.



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 8

A basic Oracle request model comprises four components:
Chainlink client, Oracle contract, off-chain Oracle nodes, and
external adapters.

• Chainlink client: It’s an upper-level contract enabling
the smart contract to be constructed and issue requests.
A complete request requires the Oracle address, job ID,
and callback function. Through the job ID, Oracle knows
which tasks to execute; upon completing tasks, Oracle
sends responses to the callback function.

• Oracle contract: Responsible for handling on-chain re-
quests and emitting events containing request messages.
Off-chain Oracle nodes monitor these events, and once
the Oracle contract receives the job result, it returns the
result to the Chainlink client using the callback function.

• Off-chain Oracle nodes: Run concurrently with the
Oracle contract. They listen to events emitted by the
on-chain Oracle contract and execute tasks using the
dispatched data. Here, the node sends GET requests to
external adapters to obtain the result of whether the
storage service provider passed the challenge. It then
submits the boolean result through a transaction back to
the Oracle contract.

• External adapter: Sends requests to storage service
providers, with parameters being the file ID and the
specific data segment number chosen by the client. The
storage service provider returns the challenged data seg-
ment along with the computed Merkle path to the external
adapter. The external adapter processes the response using
the Merkle path and the hash value of the data segment to
calculate the Merkle root and compares it with the value
stored on-chain. Subsequently, it submits the challenge
result to the Oracle contract.

The external adapter is written in JavaScript and operates
as an HTTP server in Node.js. For storage service providers,
the authors simulate them as HTTP servers in Node.js. It
provides an external API to calculate the Merkle root, access
the original file, and generate the Merkle path. In subsequent
experiments, the authors conducted performance analysis of
the proposed method on a macOS (version 12.0.1) laptop
equipped with an Apple M1 Pro CPU and 32GB of memory.
They evaluated files of various sizes, including 10 MB, 50
MB, 100 MB, 500 MB, and 1 GB. The computation time
was calculated based on different segment sizes of the file.
Specifically, the authors compared four dimensions: file read
time, Merkle root calculation time, Merkle path generation
time, and Merkle path verification time.

The following figure illustrates the computational costs of
file read time, Merkle root calculation, Merkle path generation,
and Merkle path verification, respectively, for files of sizes 10
MB, 50 MB, and 100 MB.

The following figure depicts files of sizes 100 MB, 500 MB,
and 1 GB with the same setup as Figure 6. It can be observed
that as the segment size increases, the computational costs
of file read time, Merkle root calculation, and Merkle path
generation exhibit a decreasing trend. Merkle path verification
is fast, with its time decreasing as the segment size increases.
Conversely, when files of the same segment size increase in

Fig. 11: Image source from [1]

size, the file read time, Merkle root calculation, and Merkle
path generation times increase synchronously. On the contrary,
Merkle path verification time remains almost constant and very
small.

Fig. 12: Image source from [1]

The method proposed in the paper is divided into two layers:
the incentive layer and the PoS layer:

• In the incentive layer, players are incentivized to par-
ticipate honestly in storage games. To achieve this, the
authors use smart contracts to enforce game rules, making
it incentive-compatible.

• In the PoS layer, the system verifies storage services
after a client submits challenge requests. This verification
module is implemented using the oracle network within
the smart contract, so the security of the proposed method
relies on the security of both the smart contract and the
oracle network.

The authors utilized the Chainlink oracle network, which is
currently the most widely used oracle network. The require-
ment for an oracle network in the design can be seen as a
limitation of the proposed method. This is mainly because the
security of the proposed method depends on the security of
the adopted oracle network.

For storage service providers and storage verifiers, the
computational cost of PoS is low and negligible. The primary
advantage of the proposed method is that the network does
not continuously verify storage services but only performs one-
time verification when storage service clients submit challenge



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 9

requests. It is expected that the system will not need to
execute PoS during the contract’s duration unless storage
service providers fail to provide storage services. It should be
noted that for each update request (data change), the Merkle
root stored on-chain should also be updated. In this case, the
smart contract should verify the signatures of both the client
and the storage service provider to ensure agreement on the
update. Therefore, the proposed method is the most suitable
for storing archival data and is inefficient for data storage with
frequent change requests. Improving the method to handle
update requests more efficiently can be considered a future
research direction.

E. Conclusion

In this paper, the authors introduce a novel game the-
ory mechanism for decentralized storage networks, allowing
clients to challenge storage service providers. This enables
the authors to eliminate the requirement for continuous ver-
ification of storage service providers, thus improving the
performance of the DSN. In addition, clients are protected
against service denial attacks, where a dishonest storage ser-
vice provider submits storage proofs to the network while
refusing to serve clients. The model proposed in this paper can
be integrated into any blockchain platform with smart contract
execution capabilities. The authors utilize smart contracts and
oracle networks to manage the rules of storage contracts and
implement the proposed solution using the Solidity language
and the Chainlink oracle network. The experimental results
demonstrate the applicability of the proposed method.

F. Discussion

The core of this paper lies in integrating game theory
with the design of decentralized networks. However, the game
design proposed in the paper may be overly idealized. In
reality, malicious storage service providers may stand to gain
more benefits than the portion they are penalized by smart
contracts, potentially leading to a deviation from the ideal
game equilibrium described in the paper. Moreover, consider-
ing the actual deployment costs on the blockchain, this paper
was implemented on the Ethereum test network. Therefore,
the metrics that can be evaluated during the experimental
process are very limited and may not fully reflect real-world
conditions.

IV. BLOCKCHAIN-BASED FILE REPLICATION FOR DATA
AVAILABILITY OF IPFS CONSUMERS

A. Introduction

Although blockchain technology offers security and trans-
parency, it faces limitations such as on-chain storage capacity.
To address the storage limitations of blockchain, the Inter-
Planetary File System (IPFS) is often used as a storage layer.
However, IPFS lacks inherent mechanisms to ensure data
availability, making it susceptible to node maintenance or fail-
ures. Ensuring long-term data availability is crucial for various
applications, such as non-fungible tokens (NFTs) that require
long-term storage value. Replicating data to other nodes is a

practical and simple method to protect data from hardware
failures and improve data availability. Keeping backup copies
of data not only enhances data availability but also increases
retrieval efficiency.

Previously used replication methods in peer-to-peer (P2P)
networks can also be employed to enhance data availability
in the IPFS network. However, previous replication methods
have some limitations. These replication methods can be
categorized into two types: clusters and replication contracts.
Clusters, for example, divide the replication system into clus-
ters where each cluster is responsible for local data storage
and maintenance, optimizing storage use. However, clusters
lack flexibility and cannot adapt to uneven distribution of peer
availability or storage capacity, nor to dynamic changes in
P2P network systems. In replication contracts, for example,
peer nodes find replication partners within the system to
establish replication contracts and mutually replicate data.
Replication contracts are vulnerable to selfish behaviors of
other peer nodes, leading to increased data availability for
highly available peer nodes and decreased data availability for
less available peer nodes.

To optimize overall data availability while ensuring flex-
ibility, this paper introduces a blockchain-based file repli-
cation mechanism. By utilizing blockchain to record peer
node information used during the file replication process,
the proposed mechanism ensures authenticity and reliability.
Unlike previous methods, the mechanism proposed in this
paper adopts a file replication algorithm inspired by Arweave.
This algorithm autonomously replicates files from other peer
nodes according to predefined rules, prioritizing files with
lower availability. By applying system-wide rules to restrict
selfish behavior of peer nodes, data availability for all peer
nodes is balanced and optimized. Additionally, the file repli-
cation mechanism includes a smart contract for detecting and
excluding dishonest peer nodes, promoting honest cooperation
among peer nodes. The smart contract allows peer nodes to
autonomously detect and exclude dishonest peer nodes without
involving any third party, enhancing the decentralization of the
replication system and the autonomy among peer nodes, while
reducing operational costs.

B. Overview
The mechanism proposed in this paper employs a replication

algorithm that prioritizes files with lower availability in the
system. Replication continues until the availability of all
files is optimized. Consequently, the proposed mechanism can
effectively optimize overall data availability in the replica-
tion system. This mechanism uses blockchain to store peer
node information used by the file replication algorithm. The
immutability of the blockchain ensures the authenticity and
reliability of this information. This information includes the
availability of peer nodes, content identifiers (CIDs) and sizes
of critical files, the amount of shared storage space, and the IDs
of IPFS peer nodes. For each file, there is a pool of replicators
on the blockchain, with the file owner being the first peer node
added to this pool.

The proposed mechanism in this paper requires peer nodes
to consume storage resources proportionate to their contri-



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 10

butions. If the ratio of the shared storage space size to the
total size of its critical files does not reach the predetermined
value P, the smart contract on the blockchain will reject
the input. (For a peer node, the value of P is inversely
proportional to its availability; the greater the file availability,
the smaller P becomes, indicating that the file no longer needs
to be replicated.) However, if a peer node secretly deletes
copies and is subsequently detected, it will be accused of
fraud. Therefore, the system should have a secure monitoring
protocol to monitor the availability of peer nodes, enabling
peer nodes to check the availability of other peer nodes. A peer
node accused of fraud will be judged by the smart contract,
and if found guilty, will be excluded from the file replication
system by the smart contract.

The figure below illustrates the basic concept of the pro-
posed mechanism. The file replication system consists of nodes
or peer nodes, representing independent IPFS users. Peer
nodes allocate storage space for their critical files and provide
additional storage space for sharing with other peer nodes.
Each peer node aims to increase the availability of its critical
files. Unlike previously proposed methods, the mechanism
proposed by the authors adopts a replication algorithm that
prioritizes files with lower availability in the file replication
system. File replication continues until the availability of all
files is optimized. Therefore, the authors’ mechanism can
effectively achieve overall data availability optimization within
the file replication system. The authors’ mechanism utilizes
blockchain to store peer node information used by the file
replication algorithm.

Fig. 13: Image source from [2]

C. Arweave-Inspired File Replication

The file replication algorithm proposed in this paper is
inspired by Arweave’s game-theoretic design for permanent
storage. Arweave is a stable, mature, and widely applied
economically sustainable protocol for permanent information
storage. Arweave achieves this grand objective through the
clever combination of blockweave and Succinct Proofs of
Random Access (SPoRA). In the blockweave, each block is
linked to two previous blocks: the preceding block in the
blockchain and a block from earlier in the blockchain history,
known as the ”callback block.” For a miner to successfully
mine a new block and receive the corresponding token reward,
they must first verify the callback block. The only way to

do this is by storing it. SPoRA incentivizes miners to store
relatively ”rare” blocks rather than easily reproducible blocks
since fewer miners can compete for the same level of reward
when choosing rare blocks.

In the file replication algorithm, the authors define the
availability A(f) of a file f as the probability that at least
one of its replicators (including the owner) is available. A(f)
can be calculated based on the availability of its replica-
tors {r1, r2, ..., rj} using the mathematical expression below.
When the replicas of a peer node are fewer than its shared
storage capacity, it periodically replicates the file with the
lowest availability. This replication increases the file’s avail-
ability. Clearly, the more a file is replicated, the higher its
availability. However, this also increases storage overhead
costs. Considering the storage capacity constraints among
peer nodes and the demand for file availability, the proposed
algorithm sets a satisfactory availability threshold TA. If the
file availability A(f) > TA, then f will not be included in
any peer node’s replication list and will not be replicated by
any peer node.

Below is the pseudo-code for the file replication algorithm.
When p is large, it indicates that the file availability is
insufficient and other peer nodes need to help replicate the file.
The value of p is inversely proportional to file availability; the
greater the file availability, the smaller p becomes, indicating
more peer nodes have a copy of the file. In the loop below,
when the sequence of files to be replicated is empty, it selects
files from neighboring peer nodes to add to the sequence. Next,
when the file replication sequence is not empty, it first sorts the
files in the sequence by availability. If the availability A(f) of
a specific file is less than the set threshold TA, the peer nodes
in the system will begin to assist in creating replicas of the
file. Once the file replica is successfully replicated, it is added
to the replica pool.

Fig. 14: Image source from [2]



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 11

D. Dishonest Peer Judgement

In the file replication system, it is possible to encounter
dishonest peer nodes. These peer nodes might engage in
dishonest behaviors, such as secretly discarding file replicas
they hold (as storing these files consumes their resources)
or providing false information and intentionally lowering file
availability. In this paper, the authors first use game theory
to analyze this situation and then introduce the proposed
mechanism for effectively identifying and excluding dishonest
peer nodes using smart contracts.

Game Theory Analysis: Each peer node in the file repli-
cation system has two choices: a peer node can choose to
cooperate (C), such as by storing files from other peer nodes
to help them increase data availability, or defect (D), such as
by secretly discarding files from other peer nodes to save their
own resources.

The small diagram below represents the payoff matrix in
the game between two peer nodes. We can see that in the
short-term equilibrium, the outcome falls at (D,D), where
both peer nodes have a payoff of 1. However, in the long-
term equilibrium, the outcome shifts to (C,C), where both
peer nodes have a payoff of 2.

Fig. 15: Image source from [2]

Game Theory Analysis: Overall, engaging in dishonest
behavior might yield short-term gains. If peer node a finds
that one of its replica peer nodes b is behaving dishonestly,
such as discarding a’s file, a will not only discard b’s file (if
a is storing b’s file) but also notify other peer nodes about b’s
dishonesty, potentially leading to b’s exclusion from the file
replication system.

Detection and Exclusion of Dishonest Peer Nodes: Although
rational peer nodes should cooperate honestly, it is still neces-
sary for peer nodes to periodically check the fidelity of their
replicas. A peer node can reasonably check its replicas every
few hours or even daily. IPFS provides the functionality to
find file providers based on the file’s CID using a Kademlia-
based DHT. This mechanism can be used as a means to verify
file storage status. Therefore, distinguishing between peer
nodes attempting to cheat and those that are merely offline or
experiencing temporary failures is crucial. Peer nodes should
not be marked as dishonest due to temporary disconnections
or failures.

The authors suggest that if the time between two failed
checks exceeds a predetermined time T , the peer node can
be considered dishonest. To maintain accountability and trans-

parency, the results of each check should be recorded on the
blockchain. The proposed mechanism primarily uses smart
contracts to effectively identify and exclude dishonest peer
nodes, avoiding the involvement of any third-party entities. It
is important to note that only potential victims have the right
to initiate a vote to determine a peer node’s honesty, and only
other potential victims of its dishonest behavior can participate
in the voting process.

The following Algorithm 2 is designed for peer node eli-
gibility screening. The algorithm uses the peer node’s ID and
address, processes them through a hash function to identify
potential victim peer nodes, and determines who is eligible to
initiate a distrust vote against a specific peer node, as well as
which peer nodes have the right to vote in the distrust voting
process.

Fig. 16: Image source from [2]

Since some peer nodes in the system may be eligible to
vote but do not participate in the voting process, the smart
contract does not require all peer nodes to vote. Instead, if
more than half of the voters vote ”dishonest” or if half of
the voters vote ”honest,” the final result can be determined.
This improves the efficiency of the voting process. The entire
process of identifying and excluding dishonest peer nodes is
illustrated in the diagram below.

Fig. 17: Image source from [2]

Below is the pseudo-code for initiating a distrust vote and
the exclusion process on the smart contract for a specific node.
The entire process can be divided into three steps:

1) The initiator of the vote sends the IPFS Peer ID of
the node accused of dishonesty and the nature of its
dishonesty DA to the smart contract. DA can have three
possible values: ”DR” indicating secret deletion of file
copies, ”IA” indicating providing inaccurate availability
or deliberately lowering availability, and ”IS” indicating
providing inaccurate file size. Upon completion of the



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 12

authentication procedure, the smart contract will initiate
the vote, grant voting rights to the voters, and create
notifications to inform the voters. Importantly, the vote
initiation process cannot be duplicated. If the initiation
fails, a notification will be created to inform the initiator.
This ensures transparency and feedback to the user when
an initiation attempt fails.

2) After the authentication procedure is completed, voters
cast their votes (”honest” or ”dishonest”). Each voter is
allowed only one vote, and multiple voting is prohibited.
Once a voter casts their vote, their voting rights are
revoked to prevent multiple voting attempts. If a voter
tries to vote multiple times, their request will be denied.
This ensures the integrity of the voting process.

3) If more than half of the voters vote ”dishonest,” the
smart contract will suspend the voting, mark the accused
node as a dishonest peer node, delete its information,
and broadcast its dishonest behavior to all nodes in the
system. This effectively excludes the node from the file
replication system. If half of the voters vote ”honest,”
the smart contract will also suspend the voting, clearing
the accused node’s name.

Fig. 18: Image source from [2]

E. Performance Evaluation

The file replication algorithms used for comparison in the
experiment:

• Replication Contracts: Optimistic Query, Practical Query
• Replication Contracts & Clustering: Explicit Click
To comprehensively evaluate the proposed algorithm, the

authors implemented these algorithms on the cycle-driven P2P
simulator PeerSim. The aim was to assess the algorithm’s
performance under different levels of churn in a large-scale
P2P network. The authors began the simulation of the P2P
file replication system with a basic assumption: the departure,
arrival, disconnection, and reconnection of all peer nodes are
completely independent. The P2P network comprised 10,000
peer nodes. For simplicity, each peer node had a single
important file to replicate, and all these files were of equal
size. Each experiment lasted for 9,000 cycles.

In the experiment, each peer node was associated with a
specific configuration profile. Subsequently, Gaussian noise
with σ=0.1 was added to each node’s availability. Finally, file
availability was restricted to the range of 3% to 97%. The
table below shows the distribution of peer nodes in different
states, and nodes in different states had different availabilities.

Fig. 19: Image source from [2]

Based on the distribution of peer node states in the previous
table, we can represent the distribution of generated peer nodes
using the histogram below. The availability of each peer node
remains constant throughout the simulation process.

Fig. 20: Image source from [2]

The figure below, part (a), shows the impact of differ-
ent peer node availabilities on the average file availability.
Clearly, Explicit Pinning generates a diverse spectrum of file
availabilities: files of highly available peer nodes have an
availability above 99%, while files of peer nodes with avail-
ability below approximately 50% have an availability below



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 13

99%. As the peer node availability decreases, file availability
also decreases, and the least available peer nodes are almost
unaffected by replication, resulting in file availabilities below
15%. In Optimistic Querying, only the files of the most
available peer nodes have an availability above 99%, while the
file availabilities of other peer nodes remain almost unchanged
due to the difficulty in finding partners to help replicate files.
The results of Practical Querying show that all peer nodes
have a file availability above 45%, and some peer nodes,
including both highly available and less available nodes, have a
file availability above 99%. Except for the authors’ algorithm,
none of the methods can ensure optimization of overall data
availability. In contrast, the authors’ algorithm ensures that the
file availability of all peer nodes is above 99%. Experimental
results demonstrate that the authors’ algorithm can achieve
optimization of overall data availability.

Fig. 21: Image source from [2]

Part (b) of the figure describes the relationship between the
average number of replicas for all methods and peer node
availability. We can observe that, in Optimistic Querying, there
are essentially no replicas stored on peer nodes other than the
most available ones. Practical Querying exhibits a trend similar
to part (a) of the figure, as highly available peer nodes have
more replication partners, leading to higher file availabilities.
Additionally, we can observe that both Explicit Pinning and
the authors’ algorithm demonstrate stability. In the authors’
algorithm, even without any storage capacity limitations on
peer nodes, the average number of replicas for most peer nodes
remains around 4. In contrast, in Explicit Pinning, the average
number of replicas for most peer nodes remains around 6.
These results confirm that the authors’ algorithm produces
fewer file replicas and incurs lower storage costs.

The figure below shows the effectiveness of alternative
versions of the authors’ proposed algorithm under different
thresholds TA values (7, 8, and 9). In all cases, all 10,000
files successfully achieved satisfactory availability. To simplify
the presentation of experimental results, the authors chose to
display the results for 100 files here. The results also indicate
that these alternative versions of the proposed algorithm can
optimize the overall data availability within the system.

The figure below illustrates the relationship between the
average availability of all files in the system and the join/leave

Fig. 22: Image source from [2]

Fig. 23: Image source from [2]

rate of peer nodes. Except for the algorithm proposed by the
authors, the performance of other algorithms drops sharply
with higher node churn rates, as departing nodes might possess
file replicas. Due to the optimal progress advantage of the
authors’ proposed algorithm, which maximizes overall data
availability at each step of the file replication process, its
performance is less affected by node churn. The experimental
results also demonstrate the strong robustness of the proposed
algorithm against node churn.

F. Conclusion

This paper proposes a blockchain-based file replication
mechanism where IPFS users can mutually assist in pre-
venting hardware failures and improving data availability.
The proposed mechanism includes an Arweave-inspired file
replication algorithm and smart contracts for information col-
lection and updates, as well as for detecting and excluding
dishonest peers. This mechanism uses blockchain to record
peer information used by the file replication algorithm to
ensure authenticity and credibility. The mechanism prioritizes
the replication of files with lower availability until all files
in the replication system, composed of IPFS users, achieve
satisfactory availability. Furthermore, the mechanism can dy-
namically adapt to changes in the replication system by



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 14

Fig. 24: Image source from [2]

utilizing blockchain information and the independence of file
replication by each peer. The smart contract used to detect and
exclude dishonest peers allows peers to fairly judge accused
dishonest peers and effectively exclude them from the file
replication system, promoting honest cooperation among peers
without involving any third party.

The proposed mechanism in this paper achieves optimiza-
tion of overall data availability and provides flexibility. Exper-
imental results demonstrate the superiority of this mechanism
compared to other methods. It achieves significant improve-
ments in data availability across the entire replication system,
reduces storage overhead, and shows excellent robustness. Its
low overhead and superior performance make it particularly
suitable for deployment in P2P data networks like IPFS.
Additionally, the smart contracts are compiled and deployed
using the Truffle framework. The feasibility of the smart
contracts has been thoroughly tested and verified.

G. Discussion

In practical applications, as the number of peer nodes in the
network increases, the scalability of the proposed mechanism
in this paper may face challenges. Utilizing blockchain for
information recording and smart contracts can lead to scal-
ability issues, especially in large networks. The increase in
the number of transactions and the size of the blockchain
may affect the overall performance and efficiency of the sys-
tem. Implementing smart contracts on the blockchain requires
computational resources. Depending on the chosen blockchain
platform (e.g., Ethereum), the cost of executing smart contracts
and storing data on the blockchain can be high. This could
pose challenges in resource-constrained environments and
potentially limit the feasibility of the proposed mechanism.

V. TOWARDS PRACTICAL AUDITING OF DYNAMIC DATA
IN DECENTRALIZED STORAGE

A. Introduction

The openness requirement of Distributed Storage (DS)
demands convincing technical means to ensure the integrity
of users’ remotely stored data. To date, nearly every relevant
application of distributed storage has an inherent data auditing

mechanism built into its design core, where an auditor peri-
odically verifies random portions (chunks) of outsourced data
from storage nodes and rewards or penalizes nodes based on
the audit results. However, delegating the critical function of
data storage auditing to any single entity violates the principle
of decentralization. Most applications related to distributed
storage rely on a common blockchain as a fair public auditor.
On the blockchain, it can verify storage proofs submitted by
nodes and fairly resolve potential payment disputes between
parties. This architecture, known as on-chain auditing, requires
storage proofs and auditor states to occupy as little storage
resources as possible. Classic storage proofs (PoS) schemes
offer a promising solution as they can generate highly compact
proofs, and recording auditor states requires minimal storage
space. However, this approach only guarantees storage proofs
for static data.

In academia, a series of dynamic storage proof methods
have been proposed in the past, applicable to traditional cloud
storage. However, some of them are inherently unsuitable for
the on-chain auditing framework due to security reasons. For
the context of distributed storage, potential adaptive dynamic
storage proof schemes can be classified into two main cate-
gories:

• The first category designs combine homomorphic tags
and Authentication Data Structures (ADS) to protect out-
sourced data while allowing efficient updates at sublinear
costs. Their main drawback is the larger storage space
required for storage proofs.

• The second category can generate shorter proofs com-
pared to classic static storage proof methods. However,
they require auditors to maintain dynamic states with
high update costs, which is too expensive for on-chain
auditing.

In summary, the actual auditing of dynamic data in the con-
text of distributed storage remains largely unexplored. In this
paper, the authors explore the design space of dynamic storage
proofs and observe that technical details revolve around the
handling of index information. Through appropriate index
transformation mechanisms, static storage proofs can be con-
verted into dynamic storage proofs while retaining the compact
storage proof of the former. This mechanism introduces an
unusual index state to all parties in the auditing protocol, with
the key technical challenge being how to manage this index
state so that it can be practically maintained on a resource-
sensitive public blockchain, where every byte is crucial.

B. Overview

A distributed storage system is constructed from multiple
layers. Architecturally, the data auditing layer sits between the
underlying storage layer and the upper incentive layer, gluing
them together. It interacts with the underlying storage system
and provides necessary support, namely, furnishing evidence
for the integrity of outsourced (uploaded) data and ensuring the
correct operation of blockchain incentive mechanisms. In the
authors’ design, storage nodes are audited individually, mean-
ing the owners of original data will sign separate contracts
with different storage nodes. This is reasonable since nodes in



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 15

decentralized networks typically do not work in a coordinated
manner, and different nodes vary in capacity and service qual-
ity commitments. The authors utilize a public blockchain as
the decentralized infrastructure and do not consider designing
consensus protocols based on storage proofs, similar to some
existing proposed methods.

The on-chain auditing functionality of the blockchain is
realized through a smart contract called the auditing contract.
It encompasses functionalities for storage contract setup, data
auditing, updates, and more. The auditing contract should
define interfaces to handle disputes between off-chain parties
and interact with the incentive mechanisms of distributed
storage, which can be implemented in other smart contracts.
In the proposed architecture, the owner of original data sets up
the auditing protocol locally. This private setup is implicitly
considered in the literature related to storage proofs. The
authors emphasize this distinction as it leads to different
security implications, especially when one seeks integrity
guarantees for multiple replicas of the same data. In a public
setup, storage nodes can deceive the owner of original data
by storing less data than required. In contrast, in a private
setup, the owner of original data can encrypt data replicas
with different keys, making them independent of each other,
to address the aforementioned issue.

The system model proposed by the authors comprises three
entities: the owner of original data for local data storage,
storage nodes assisting in creating file storage replicas, and
the on-chain auditing smart contract overseeing both parties.
The data auditing layer is built on top of the underlying storage
layer, serving the upper incentive layer in the distributed
storage framework. The arrows in the image below denote
the primary flow of data, while the dashed lines represent the
normal data retrieval process.

Fig. 25: Image source from [3]

The authors assume that the blockchain platform is trust-
worthy and that the smart contracts used for auditing are
correctly implemented. They do not consider attacks against
the blockchain itself. However, they assume mutual distrust
between data owners and storage nodes. To comply with the
principles of the open economy in distributed storage, the
authors also consider malicious data owners. They may falsely
accuse storage nodes to potentially obtain compensation en-
forced by smart contracts. Finally, the authors assume that
the communication channels between parties are authenticated.
Previous research has shown that in the context of public
storage auditing, third-party auditors can recover original

blocks by repeatedly challenging storage proofs. Whether this
poses a serious problem in the case of distributed storage is
debatable, as the stored data is almost always encrypted by
default. In the proposed design, the authors can conveniently
instantiate existing structures to make the underlying storage
proofs zero-knowledge, thereby preventing malicious recovery
of on-chain data.

C. On-Chain Auditing of Dynamic Data

The authors aim to address the issue of data dynamism while
maintaining the efficiency of storage proof methods. Their key
idea is to bind chunks with alternative index information that
is insensitive to data dynamism. Ideally, an update to a chunk
should only affect its own tag. They refer to this index as
a pseudo-index, denoted by pi, corresponding to chunk fi.
For their proposed design to work correctly, there must be
a one-to-one mapping between logical indices and pseudo-
indices. This mapping should be stored in some data structure,
introducing an unconventional state that must be maintained by
all parties involved in the storage proof method. It allows each
party to access necessary index information for tag calculation,
proof generation and verification, and update operations. This
approach can transform any static storage proof method into a
dynamic one. As long as all pseudo-indices used at any given
time are different, and the (public) auditors always maintain
the correct state, the security guarantees for data integrity or
retrievability remain unchanged.

The index mapping is stored in an explicit form (index
i and pseudo-index pi), and regardless of the data structure
used, the time complexity for insert and delete operations is
always O(n). The authors found that index mapping can be
elegantly encoded through linked lists. Assuming each node
of the linked list stores a data chunk in the correct order, a
chunk’s logical index is its position in the linked list, and
the pseudo-index can be set to the address of its node. During
updates, the index mapping is automatically maintained by the
linked list. Since the linked list does not need to store actual
chunks, we can use a regular array that only stores pointers
(and other small metadata) to implement it. The authors refer
to this result as the Pseudo-Index Linked List (PIL), a concise
data structure.

Over time, the same pseudo-index can be assigned to
different chunks, creating the possibility of a relay attack,
where storage nodes use outdated, invalid chunks matching
the index to forge proofs. To ensure freshness, the authors
associate the latest update time of each chunk and store it as
part of the state, denoted by IS. It’s noteworthy that auditors
can directly sample chunks using their pseudo-indices (or
equivalently using array indices of IS). Storage nodes can
map pseudo-indices in the challenge back to logical indices
and generate proofs as usual. Since auditors no longer need
to perform index conversion, they only need to maintain a
timestamp array, Aac, consistent with IS from the other two
parties. Auditors can easily update Aac using pseudo (array)
indices and timestamps sent from the client.

In On-Chain Auditing (OAD), the authors manage the
index state using a single PIL. Now, they attempt to add a



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 16

separate PIL for each segment. A segment manages an index
mapping for a series of contiguous logical chunk indices,
which are naturally ordered. A global logical chunk index
can be uniquely represented in the form of segment indices
and local logical chunk indices within the segment. This
design produces a two-tier structure: one PIL for segment
indices and another set of PILs for chunk indices. Segments
lead to two independent states: one containing IS+ for chunk
index mapping and another for managing segment information,
denoted as IS-. Thus, the authors propose a second on-chain
auditing protocol, OAD+. The main difference between OAD
and OAD+ lies in how they handle index information. Here,
the Audit Contract (AC) relies on verification chunk index
information sent from the Storage Node (SN) to verify the
validity of storage proofs.

D. Data Abstraction for Auditing

Frequent data relocations can lead to significant fragmen-
tation issues, resulting in many underutilized chunks and
performance impacts. An ideal design should limit changes to
chunks within themselves and maintain a balanced and highly
utilized state for all chunks. Despite these complex factors,
the actual content required for auditing is very straightforward:
data should be viewed as a series of ordered chunks. How data
is organized and stored by the underlying storage system is
irrelevant to the auditing protocol. By providing an appropriate
data abstraction layer, the authors can decouple auditing from
data storage, allowing the proposed auditing protocol to be
deployed on any storage system. Another benefit is that the
authors found in practice, this small data abstraction layer
can exist entirely in main memory. This makes it easier to
accurately analyze performance optimizations for both the
auditing protocol and the storage system.

From the diagram below, it can be seen that through the Data
Abstraction Layer proposed by the authors, the two auditing
protocols presented in this paper can be applied to various
different data storage devices or systems.

Fig. 26: Image source from [3]

The core of this data abstraction design is the Lightweight
Audit Chunk (LAC) proposed by the authors. LACs store
virtual data segments. The capacity of an LAC is the maximum
virtual data it can accommodate, which equals the sum of
the lengths of all the triplets it currently stores. An LAC
is not necessarily full, meaning its size can be smaller than
or equal to its capacity. An object can span multiple LACs

and is always allocated to the minimum necessary number of
contiguous LACs. This effectively reduces data fragmentation
and management overhead since the total number of triplets is
minimized. LACs can be freely modified, inserted, or deleted
to meet the requirements of the auditing protocol. Updating
an LAC involves operating on metadata triplets but not actual
data, making it highly efficient.

E. Evaluation

The authors implemented their protocols in C++ for evalu-
ation. They relied on the mcl library to implement the main
cryptographic operations. For 128-bit security, they used the
BN12-381 curve to implement the storage proof method. The
same curve was also used to implement the BLS signature
protocol OAD+. They also constructed a data abstraction layer
and integrated it into the native Linux file system to understand
its impact on performance. The authors used a test platform
equipped with an Intel E-2174 CPU (3.8GHz, 8 cores) and
64GB RAM. It had a capacity of 4TB and a 7200 RPM HDD.
All experiments were conducted on a single core. Unless
otherwise specified, each data point in the charts represents the
average of 100 independent runs. For I/O-related experiments,
the authors always cleared the page cache of the Linux system
to ensure that the operating system did not cache files in
memory, thus presenting realistic experimental results.

The table below shows the specific storage proof sizes under
the same 128-bit security and for a 1TB file. The storage proof
size of ICPOR is equal to the size of one chunk plus one tag.
The storage proof size of DPDP is close to the size of one
chunk plus c tags and c verification data structures (ADS) of
length log(n). From the table, it can be seen that while ICPOR
may be suitable for on-chain auditing with small chunks, using
DPDP (and general ADS-based designs) is impractical due
to their consistently large storage proof sizes. In contrast, the
storage proofs generated by OAD and OAD+ are much smaller
and can support real-world blockchain platforms well.

Fig. 27: Image source from [3]

The graph below illustrates the size of audit states corre-
sponding to file sizes ranging from 1GB to 1TB. From the
results, it can be seen that the proposed auditing protocols can
identify an optimal chunk size that minimizes the state size for
a given file size. For a 1TB file with a chunk size of 256KB,
OAD+ produces a state size of 0.78MB with m = 100; for a
chunk size of 64KB, it produces a state size of 0.25MB, with
m = 1000. It is noteworthy that such small state sizes can even
rival the proof sizes of ADS-based methods. This represents
a significant improvement over designs requiring O(n) state
sizes. (Here, the parameter m in OAD+ is used to adjust the
size of the IS- index state.)



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 17

Fig. 28: Image source from [3]

The graph below illustrates the generation time of storage
proofs for 1TB of data during a single audit process. Compared
to static auditing protocols, dynamic auditing protocols require
linear scanning of the state to find the correct index, while
OAD+ also requires aggregation of the signatures of the index
bytes. As observed in the graph, the cost is evident due
to the substantial linear scanning work required for small
chunk sizes. However, as the chunk size increases, this cost
diminishes rapidly. Starting from a chunk size of 64KB, the
performance of dynamic auditing protocols approaches that of
static auditing protocols.

Fig. 29: Image source from [3]

The graph below illustrates the local data update cost
for data owners. Here, the authors only consider insertion
operations as they are the most expensive among the three
update operations. In addition to computing the new tag, the
auditing protocol also requires finding the corresponding PIL
of the index state and locating the correct position for insertion.
From the results of the implementation evaluation, it can be
seen that the process of finding the corresponding PIL of the
index state dominates the local data update cost in OAD, but
it is not the primary reason for the high local data update cost
in OAD+.

The graph below illustrates the setup time of the auditing
protocol for data owners. The cost of OAD should essentially
be the same as that of the static auditing protocol structure
because its index state initialization can be negligible. OAD+,
on the other hand, requires additional costs to sign the index
bytes, but its overall setup cost is still dominated by the
underlying storage proof.

Fig. 30: Image source from [3]

Fig. 31: Image source from [3]

The table below provides an overview of the datasets used
in the authors’ experiments. Four of them are generated using
FileBench, following a gamma distribution, with average file
sizes of 1MB, 2MB, 5MB, and 10MB. The last one is obtained
from a GitHub clone of the Linux codebase, with the .git folder
removed.

Fig. 32: Image source from [3]

In the figure below, the authors evaluate the construction
time of the data abstraction layer for different chunk sizes.
The results indicate that even for the smallest chunk size that
would result in a large number of chunks, setting up a 1TB
dataset only takes 10 seconds. Such low cost is attributed to
the fact that building the data abstraction layer only requires
reading the meta data of the files, not their actual contents.

In the figure below, the authors illustrate the loading time of
random chunks. In theory, the I/O cost should be proportional
to the chunk size, which is generally evident in the graph.
However, for smaller chunks, the results on two larger datasets
show the opposite direction. This is attributed to the sequential
scanning of chunks to access them. We can enhance lookup



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 18

Fig. 33: Image source from [3]

performance by storing pointers to chunks in data structures
that support fast searches.

Fig. 34: Image source from [3]

Additionally, the authors measured the cost of writing
updated files on storage nodes, which includes updating the
relevant triplets within chunks. The estimated cost corresponds
to the time it takes to write the file to the disk only. They
considered file sizes ranging from 1KB to 1GB, and for each
size, they randomly sampled files from the FB-1TB dataset.
The results in the figure below indicate that this cost is
negligible for all file sizes and chunk sizes, as the overhead is
less than 1% in all cases.

Fig. 35: Image source from [3]

F. Conclusion

The emerging decentralized storage paradigm demonstrates
tremendous potential. To incentivize cautious users, such
systems must offer robust data integrity guarantees while
supporting full data dynamism to enhance availability, an
area that has been relatively underexplored. This paper delves
deep into the shortcomings of existing data auditing solutions
in meeting these new paradigms. To address the gaps in

the research field, the authors have developed a series of
on-chain auditing protocols optimized for dynamic data and
demonstrated their practical efficiency. With the trend towards
decentralized storage with enforceable auditability continuing
to gain momentum, the authors hope their research findings
will inspire further exploration into the availability aspects of
this enticing technology.

G. Discussion

This paper’s primary drawback lies in the challenge of man-
aging index states in resource-sensitive public blockchains,
where every byte is crucial. The proposed mechanisms face
challenges in achieving efficiency in off-chain updates between
data owners (OW) and storage nodes (SN). Additionally, the
proposed methods require auditors to maintain dynamic states
with complexity O(n) and high update costs, which is too
expensive for on-chain auditing. This limits their application in
real decentralized storage networks with growing user numbers
and data volumes. Furthermore, the use of authenticated data
structures (ADS) in dynamic storage proof schemes leads to
large proof sizes, posing a significant challenge as the proof
size becomes impractical for on-chain auditing due to its size.
These drawbacks underscore the need for more efficient and
practical solutions for auditing dynamic data in decentralized
storage networks.

VI. LIMITATIONS OF DECENTRALIZED STORAGE
NETWORKS (DSNS) [4]

While decentralized storage network systems hold promise,
they still come with some drawbacks. As the technology is
still in its nascent stages, researchers are exploring ways to
address its challenges. Here are some of the challenges faced
by blockchain-based decentralized data storage networks:

• Lack of Trust: Utilizing P2P technology, data is stored
in a decentralized manner, bypassing centralized reg-
ulations. However, the lack of relevant accountability
mechanisms in case of data loss or transaction mishaps
may make it challenging for enterprises and consumers
to trust decentralized networks. Due to the lack of trust
in decentralized networks, developers are striving to en-
hance the highest levels of security, and new technologies
may need time to gain the trust of businesses.

• Complexity of Development: Developing blockchain-
based decentralized storage networks introduces addi-
tional complexity to consensus mechanisms. Proof-of-
Storage (PoS), based on consensus mechanisms, ensures
the authenticity of documents by verifying the integrity
of remote files. To illustrate, each node in the system
must prove that its submitted data qualifies it to add new
records. Otherwise, users might perceive the consensus
mechanism of the blockchain network as flawed. While
the designed consensus mechanism is relatively complex,
as any developer would tell users, this is an application
worth paying attention to.

• Security Concerns: Despite the strong security of de-
centralized storage systems, malicious nodes may still
potentially disrupt and even potentially destroy entire



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 19

decentralized storage network systems through launching
centralized attacks. And blockchain-based decentralized
storage systems are still in development to prevent these
malicious attacks.

• Time to Enter the Mainstream: Decentralized storage
undeniably addresses common issues with centralized
storage. Compared to traditional mainstream storage sys-
tems, decentralized storage offers many advantages. To be
widely adopted, however, decentralized storage network
systems must provide services superior to the existing
market. But currently, this technology is still in its early
stages, and until it sees broader use in enterprises, it will
remain niche in the market.

VII. RESEARCH CHALLENGES AND FUTURE DIRECTIONS

Despite the potential of blockchain-based decentralized stor-
age network (DSN) systems, there are still several shortcom-
ings that need to be addressed. In this paragraph, we will
discuss the challenges faced by individuals and organizations
when using services related to blockchain-based decentralized
storage networks.

• Security: While blockchain networks offer higher se-
curity compared to traditional centralized systems, it’s
essential to note that blockchain may not provide com-
plete security. Due to the decentralized nature of the
network, security issues are less frequent but still pos-
sible. For instance, each time data needs editing or
sharing with a third party, decrypting and re-encrypting
the encrypted files could pose security risks. Additionally,
while data is secure during storage, it may not be as
secure during network transmission. Some attacks could
severely damage the blockchain itself and its applica-
tions. For example, a 51% attack on a Proof-of-Work
(PoW) consensus algorithm blockchain is possible, where
nodes with high computational power could control the
blockchain, leading to attacks like selfish mining and
double spending. Increasing the number of nodes in the
system can effectively prevent such attacks to ensure that
no single entity can control the entire blockchain.

• Lack of Decision-Making Data: In many companies
and organizations, collected data is considered a valuable
resource for analysis and decision-making. However, as
all data is encrypted before storage, blockchain-based
storage systems cannot facilitate this process. Companies
can authorize certified agents to store data in blockchain-
based storage systems like Block House. Hence, company
agents can retrieve and analyze all information as needed.
Furthermore, private blockchains with certified members
do not require data encryption. Through blockchain, data
can be stored securely, reliably, and traceably on the
chain.

• Legal Limitations: Smart contracts deployed on the
blockchain hold both parties accountable for important
information and conditions written down. However, in
case of fraud, deception, or other unforeseen issues, there
is a lack of practical legal support or court systems to rely
on.

• Scalability Issues: Anyone wishing to join a blockchain
network can do so by becoming a voluntary node. Main-
taining network efficiency and security becomes challeng-
ing as the network grows. Scalability issues of blockchain
networks can lead to delays and other problems. The
scalability issue of a blockchain network may result
in delays and other problems. As new nodes join the
network, the startup time for new nodes includes the
time needed for downloading and analyzing the network’s
history, which can be costly and time-consuming for older
and larger blockchains like Bitcoin.

• Access Control: Blockchain always contains records
of previous transactions, and it can be expected that
a large amount of data will be constantly replicated
among all nodes. However, this does not mean that the
blockchain itself is a database. Large files stored on the
blockchain may inflate according to both specifications.
The blockchain storage network cannot share files be-
tween users. Solutions based on smart contracts have
been proposed to overcome this issue, but they are only
applicable to IPFS.

VIII. CONCLUSION

This paper explores the application of blockchain tech-
nology in decentralized storage networks (DSNs). The paper
primarily introduces three different solutions proposed in IEEE
Transactions journal articles. Firstly, paper [1] proposes an
incentive-compatible mechanism that allows clients to initi-
ate challenge requests to storage service providers without
continuous verification of storage services. The mechanism
utilizes blockchain smart contracts to execute storage contract
rules and uses Oracle networks for storage verification, ef-
fectively preventing denial-of-service attacks. Secondly, paper
[2] introduces a blockchain-based file replication mechanism
that optimizes the data availability of the entire system using
a decentralized storage algorithm inspired by Arweave. The
mechanism employs smart contracts to monitor and elimi-
nate dishonest nodes, promoting honest cooperation among
nodes. Finally, paper [3] discusses how to audit dynamic
data on resource-constrained public chains and proposes two
audit protocols, OAD and OAD+, based on pseudo-indexes.
These protocols transform static storage verification schemes
into dynamic storage verification schemes through appropriate
index transformation mechanisms while maintaining compact
verification overhead. Overall, these three papers explore the
application of blockchain in decentralized storage systems
from different perspectives, offering valuable solutions to
improve data availability, prevent malicious behavior, and sup-
port dynamic data auditing. These research findings provide
important references and insights for the future development
of decentralized storage networks.

ACKNOWLEDGMENTS

This document was originally written in Traditional Chinese
and subsequently translated into English using ChatGPT, with
grammar corrections made through Grammarly. The writing



DISTRIBUTED SYSTEMS, VOL. 1, NO. 2, JUNE 2024 20

tool primarily used for this document was Overleaf, supple-
mented by the Writefull extension, which proved to be a
useful AI tool for writing academic papers. Special thanks
are due to the research seminar course for introducing me
to the Writefull tool for writing papers. The content of this
document is based primarily on the author’s extracurricular
research on topics learned in the Distributed Systems course
offered by the Institute of Information Management at National
Yang Ming Chiao Tung University. The document includes the
author’s personal interpretation and assimilation of knowledge
gained from three IEEE Transaction journal papers; therefore,
the accuracy of the content cannot be guaranteed. Additionally,
I extend special thanks to the professor who taught this course,
as well as to all the individuals who have made significant
research contributions to the field of distributed systems. It is
because of your contributions that I have been able to dive
deeper into this fascinating field.

REFERENCES

[1] I. Vakilinia, W. Wang, and J. Xin, “An incentive-compatible mechanism
for decentralized storage network,” IEEE Transactions on Network Sci-
ence and Engineering, vol. 10, no. 4, pp. 2294–2306, 2023.

[2] F. Yang, Z. Ding, L. Jia, Y. Sun, and Q. Zhu, “Blockchain-based file
replication for data availability of ipfs consumers,” IEEE Transactions
on Consumer Electronics, vol. 70, no. 1, pp. 1191–1204, 2024.

[3] H. Duan, Y. Du, L. Zheng, C. Wang, M. H. Au, and Q. Wang,
“Towards practical auditing of dynamic data in decentralized storage,”
IEEE Transactions on Dependable and Secure Computing, vol. 20, no. 1,
pp. 708–723, 2023.

[4] M. I. Khalid, I. Ehsan, A. K. Al-Ani, J. Iqbal, S. Hussain, S. S. Ullah,
and Nayab, “A comprehensive survey on blockchain-based decentralized
storage networks,” IEEE Access, vol. 11, pp. 10 995–11 015, 2023.

[5] R. Banoth and M. B. Dave, “A survey on decentralized application based
on blockchain platform,” in 2022 International Conference on Sustainable
Computing and Data Communication Systems (ICSCDS), 2022, pp. 1171–
1174.

[6] R. Sujeetha and C. A. S. Deiva Preetha, “A literature survey on smart con-
tract testing and analysis for smart contract based blockchain application
development,” in 2021 2nd International Conference on Smart Electronics
and Communication (ICOSEC), 2021, pp. 378–385.

[1] [2] [3] [4] [5] [6]

Qi Xiang Zhang received the BBA degree from the
Department of Information Management, National
Central University of Taiwan (NCU), in 2023. He
is currently pursuing an MS degree with the In-
stitute of Information Management, National Yang
Ming Chiao Tung University of Taiwan, NYCU. His
main research interests include data mining, machine
learning and privacy, and network security.


