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Abstract—This document will primarily share the knowledge
the author has learned in the course of distributed systems
in a simple manner. We will not delve too deeply into the
underlying technical principles of distributed systems, and we
hope that readers will be able to gain a general understanding
of distributed systems without any prior knowledge when reading
this document.

Index Terms—Distributed Systems.

I. INTRODUCTION

IN a distributed system, each node is an element with
autonomous computing capability. When referring to a

distributed system, if there is no process of collaboration
among nodes, it cannot be considered a distributed system.
In a distributed system, each node has its own notion of time.
Therefore, in the absence of a global clock and when each
node has its own system clock, how to synchronize the various
nodes becomes a key issue that distributed systems need to ad-
dress. There are many other problems that distributed systems
need to solve, such as how to manage group membership,
how to ensure that a group of nodes is indeed communicating
with authorized nodes, and whether it is necessary to store the
survival state of nodes during the process. Additionally, when
designing distributed systems, it is also necessary to consider
whether the default condition is that nodes can freely enter
and exit or whether there are restrictions. Finally, there’s one
more issue that must be mentioned: how to ensure that the
required data can be found in a dynamic network structure
when the relationships between nodes and their adjacent nodes
are dynamic.

Next, let’s discuss overlay types in distributed systems, with
peer-to-peer (P2P) networks being one of them. However,
we generally classify distributed systems into structured and
unstructured types. In structured distributed systems, there
exists a group of well-defined neighbors. However, in the
case of mobile networks, ensuring the stability of neighbors
within the group is a key issue. In unstructured distributed
systems, there are no predefined neighbor groups, and nodes
are randomly selected, with no structured network topology.
This can result in the need to search through many nodes
when searching for data. However, in distributed systems,
neither structured nor unstructured is inherently better. We still
need to decide whether to adopt a structured or unstructured

distributed system architecture based on the current contextual
requirements.

The next topic we’ll address is coherent systems, which
refer to a collection of nodes operating as a whole, where
end-users do not need to know where computations are taking
place. However, there are some inevitable issues within co-
herent systems, including partial failures, failures of parts of
the distributed system, difficulty in recovery, and determining
the proportion of nodes required to maintain the normal
operation of the distributed system, among others. Middleware
is also a crucial component of distributed systems, acting as
the operating system (OS) of the distributed systems. After
discussing the general concept of distributed systems, we
need to determine what objectives distributed systems can
help achieve, such as supporting resource sharing, distribution
transparency (including access, location, relocation, migration,
replication, concurrency, and failure handling), openness, and
scalability, among others.

In distributed systems, the degree of transparency is also
a crucial issue that needs to be discussed. Aiming for full
distribution transparency may be overly ambitious because
completely hiding errors in distributed systems is nearly
impossible. Additionally, it’s not appropriate to attribute slow
computational speed to failures in distributed systems. There-
fore, deciding how often to update information between nodes
in the distributed system is important. However, pursuing full
transparency may significantly impact the overall performance
of the distributed system. On the other hand, exposing dis-
tribution can be beneficial, especially for applications like
location-based services. The openness of distributed systems
ensures that nodes can communicate in different execution
environments. But achieving this requires distributed systems
to have well-defined interfaces. Determining the policies or
mechanisms for these interfaces, such as dynamic cache poli-
cies or various encryption methods, is another topic worthy of
discussion.

The next topic to discuss is scaling in distributed systems,
which includes size scalability, geographical scalability, and
administrative scalability, among others. However, in practice,
discussions often revolve around size scalability. In geo-
graphical scalability, the issue of latency in communication
between nodes is prevalent. On the other hand, administrative
scalability often involves computational grids. Techniques for
scaling in distributed systems include asynchronous commu-
nication, separate handlers for incoming responses, moving
computations to clients (where clients can assist servers with
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some preliminary work, such as validating form data on the
client side), mirrored websites, web caches, file caching, and
more. However, scaling in distributed systems also encounters
issues with replication. As the scale increases, ensuring that
changes made to a single node can quickly synchronize across
the entire distributed system, while also ensuring consistency
and achieving global synchronization, becomes challenging.
Non-technical issues are often the most difficult to resolve in
this context.

Furthermore, when delving deeper into the discussion, it’s
important to address some pitfalls encountered in the devel-
opment of distributed systems. When designing distributed
systems, we often fall into the trap of false assumptions and
unnecessarily overcomplicate the design. False assumptions
in distributed systems include assuming that the network is
trustworthy, secure, and homogeneous, as well as assuming
that the network topology is fixed and immutable. Other false
assumptions include expecting zero latency, infinite band-
width, disregarding data transmission costs, and assuming that
someone is solely responsible for overseeing the operation
of the entire distributed system. These false assumptions can
lead to inadequate designs and may result in systems that are
not robust or scalable in real-world scenarios. Therefore, it’s
crucial to be aware of these pitfalls and design distributed
systems with a more realistic understanding of the challenges
and constraints they face.

The operation modes of distributed systems can be cate-
gorized into parallel computing, grid computing, and cloud
computing, with a focus on discussing the latter two. In
grid computing, it assumes the presence of virtual organiza-
tions and allows nodes for collaborations. The structure of
grid computing can be divided into four layers: the fabric
layer, connectivity layer, resource layer, and collective layer,
with the applications layer being the fourth. Additionally,
cloud computing can also be segmented into four layers: the
hardware layer, infrastructure (IaaS), platform layer (PaaS),
and application layer. The advantage of cloud computing
lies in its ability to assist enterprises in integrating different
applications, as the network applications used among different
organizational units within the enterprise may vary, making
integration more challenging.

In practical terms, integrating different applications involves
various techniques and technologies. These applications may
include file transfer, shared database access, remote proce-
dure calls (RPC), messaging systems, and more. Distributed
systems can leverage a variety of tools and technologies
to provide communication facilities and integration. These
include:

1) Transaction Processing Monitors (TPM): TPMs man-
age and coordinate transactions across distributed sys-
tems, ensuring atomicity, consistency, isolation, and
durability (ACID properties).

2) Remote Procedure Calls (RPC): RPC mechanisms
allow programs to execute procedures or functions on
remote systems as if they were local, enabling seamless
interaction between distributed components.

3) Parallel Message Interface (PMI): PMI facilitates
communication and coordination between parallel pro-

cesses or nodes in distributed computing environments,
often used in high-performance computing clusters.

4) Message-Oriented Middleware (MOM): MOM sys-
tems enable asynchronous communication between dis-
tributed components by facilitating the exchange of mes-
sages, ensuring reliable delivery and decoupling sender
and receiver systems.

5) Middleware: Middleware serves as an intermediary
software layer that enables communication and integra-
tion between disparate systems and applications, provid-
ing services such as message queuing, data transforma-
tion, and protocol mediation.

6) Enterprise Application Integration (EAI): EAI so-
lutions facilitate the integration of various enterprise
applications and systems, enabling seamless data flow
and business process automation across the organization.

By utilizing these communication facilities and integration
techniques, distributed systems can effectively bridge the gap
between different applications and enable seamless interoper-
ability in complex computing environments.

Distributed pervasive systems have three subtypes, where
the system assumes nodes are small and movable. In ubiq-
uitous systems, the core elements are assumed to possess
autonomy and context awareness, among other features. In the
case of mobile computing, where numerous mobile devices act
as nodes in the network, a key aspect is discovery. In situations
where stable routes cannot be guaranteed, communication may
become more challenging. The basic idea behind mobility pat-
terns is pocket-switched networks, where a successful strategy
involves distinguishing between friends and strangers. Nodes
in motion can broadcast messages to their friend networks, and
the message is then relayed by the first encountered friend to
reach the target (first encounter).

In sensor networks, encouraging sensors to participate in
network operations is a crucial issue. Nodes in the net-
work may have varying computational capabilities, posing
challenges. Sensor networks can be applied in distributed
databases, but issues such as wasted network resources, re-
source allocation, and energy consumption persist. Despite
having aggregation capabilities, sensors may still require re-
turning too much data to the operator, presenting a challenge
in terms of data management and efficiency.

II. ARCHITECTURE

In the layered architecture of distributed systems (similar to
OSI), there are three main types: pure layered organization,
mixed layered organization, and layered organization with
upcalls. An example of a layered organization with upcalls is a
communication protocol, such as the communication (socket)
between a client and server. In terms of application layering, it
can be divided into three layers: the application-interface layer,
processing layer, and data layer. As for System Architecture,
there are different models. The centralized system architecture,
for instance, is the basic client-server model. Additionally, the
multi-tiered centralized system architecture includes single-
tiered, two-tiered, and three-tiered architectures. As client
computational capabilities strengthen, servers can offload some
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processing tasks to clients, thereby reducing the computational
burden on the server.

Next, alternative organizations can be primarily categorized
into three parts: vertical distribution (machines with different
workloads), peer-to-peer, and horizontal distribution (machines
with similar workloads). In structured peer-to-peer (semantic-
free index), hash functions are commonly utilized. Examples
include hypercube (suitable for scenarios with relatively stable
nodes) and Chord, which involves the process of transforming
to a ring (shortcut links). Typically, m-bit identifiers and m-
bit keys are used, with nodes initially sorted in order. If a
match is not found, there’s no need to continue searching. In
unstructured peer-to-peer networks, nodes can freely enter and
exit the structure. Generally, the overall network structure is a
random graph. Searching is often conducted through flooding
(time-to-live) or random walk. Hierarchically organized peer-
to-peer networks can be applied in Content Delivery Networks
(CDNs), where super peers and peers can be distinguished. In
super-peer networks, performance can be enhanced through
index servers, and data storage can be more efficiently man-
aged through brokers. One famous practical example is Skype.
In edge-server architecture, collaboration is emphasized. A
notable example is BitTorrent (torrent file, tracker, swarm).
Under the hood, neighbor sets are regularly updated by the
tracker, and when exchanging blocks, the file is divided into
pieces.

The following content is additional supplementary mate-
rial, primarily derived from Chapter 26, ”Multithreading,” in
”Java How to Program.” In multithreading, threads may not
execute simultaneously but instead utilize rapid switching to
create the appearance of simultaneous execution. Addition-
ally, threads have different states in their life cycle (thread
scheduling), including new, runnable, waiting, terminated, and
blocked. Each Java thread also has a priority, determining
its precedence in execution. However, threads may encounter
synchronization issues. Generally, these are addressed using
locks, such as the monitor’s lock, to prevent multiple updates
from occurring simultaneously. Asynchronous data sharing
can result in concurrent writes to the same location, causing
previous modifications to be overwritten by subsequent ones.
In Java, ArrayBlockingQueue or BlockingQueue’s put and
take methods are commonly used to prevent such occurrences.
Additionally, thread operation can be managed using wait,
notify, and notify all methods, while Java provides lock and
condition interfaces for synchronization purposes.

III. CONCURRENT AND DISTRIBUTED SYSTEMS

In this paragraph, we first discuss why making a system
distributed is advantageous. The benefits of a distributed
system primarily include:

1) Inherently distributed: A distributed system connects
many nodes, distributing workload and resources across
multiple machines.

2) Better reliability: Node failures do not disrupt the entire
system’s operation, enhancing fault tolerance.

3) Better performance: Data can be retrieved from nearby
nodes, reducing latency and improving overall system
performance.

4) Solving bigger problems: Distributed systems can par-
allelize the processing of complex tasks, enabling the
solution of larger-scale problems by leveraging multiple
nodes simultaneously.

Next, we address the reasons why one might opt not to make
a system distributed. The drawbacks of distributed systems
include:

1) Communication failures: Inter-node communication
may fail, leading to disruptions in data exchange and
coordination.

2) Difficulty in diagnosing crashes: Identifying which
node has crashed can be challenging, complicating fault
detection and recovery.

3) Non-deterministic problem occurrences: All problems
may occur non-deterministically, making it challenging
to guarantee fault tolerance and system stability.

The next topic to discuss is the concept of ”hard drives in
a van,” where all data is stored in the same physical location.
However, this approach poses some challenges, including
high latency and high bandwidth requirements. Latency and
bandwidth calculations are based on the time until a message
arrives. For instance, if data is stored in the same building or
central location, the latency is approximately 1 millisecond. If
the data is stored on one continent and accessed from another,
the latency can be around 100 milliseconds. However, if the
data is stored on hard drives in a van, the latency can be
as high as 1 day. Next, let’s discuss Remote Procedure Call
(RPC) and Service-oriented Architecture (SOA), both of which
were mentioned earlier. In SOA, large software applications
can be divided into numerous services, each serving a specific
function. These services can be developed using different
programming languages and communicate with each other via
RPC, enabling modular and flexible software design.

The Two Generals problem is a classic issue in distributed
systems, stemming from the inherent uncertainty present in
such systems. It revolves around the question of how a general
should decide whether to attack a city in the absence of
complete information. One approach is to send a large number
of messengers to increase the likelihood that at least one will
successfully deliver the message to the other general. Another
approach is for the general to attack only upon receiving
a response from the other general, and likewise, the other
general would only attack upon receiving a response. The main
challenge in the Two Generals problem is the lack of common
knowledge between the generals, leading to uncertainty and
potential deadlock.

Fig. 1: The two generals problem
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Expanding upon the Two Generals problem leads us to the
Byzantine Generals problem, where we cannot guarantee that
all generals are trustworthy. Messages may be tampered with
during transmission, making it difficult to pinpoint which part
of the distributed system is faulty (identifying malicious actors
is challenging). In the Byzantine Generals problem, several
characteristics emerge:

1) Honest generals do not know who is malicious.
2) Up to f generals might behave maliciously.
3) Generally, there needs to be a total of 3f+1 generals to

tolerate the presence of f malicious generals.
4) Malicious generals may collude.
Cryptography may offer some assistance in addressing the

problem, but it can also complicate matters further.

Fig. 2: The Byzantine Generals problem

In the system model, the Two Generals problem serves as
a model of networks, while the Byzantine Generals problem
represents a model of node behavior. Assumptions in a system
model need to be captured, including:Network behavior: This
encompasses message loss and can involve different types of
network links:

• Reliable links: Messages are guaranteed to be delivered.
• Fair-loss links: Messages may be lost but not mali-

ciously.
• Arbitrary links: Messages may be intentionally tam-

pered with by an active adversary.
Network partition refers to situations where some network
links drop or delay all messages for an extended period,
resulting in two parties being unable to communicate with
each other at certain times. Node behavior: Each node can
execute a specified algorithm, but there are potential issues
such as:

• Crash-stop (fail-stop): Nodes can abruptly stop func-
tioning and fail to respond.

• Crash-recovery (fail-recovery): Nodes can fail but later
recover and resume operation.

• Byzantine (fail-arbitrary): Nodes can exhibit arbitrary
and possibly malicious behavior.

These considerations are crucial for designing and analyzing
distributed systems, as they impact system reliability, fault
tolerance, and overall performance.

In terms of timing assumptions (synchrony), there are three
main categories:

• Synchronous: This ensures that nodes can execute within
a certain timeframe.

• Partially synchronous: There is some uncertainty in
timing, but it is generally manageable.

• Asynchronous: Messages may experience random de-
lays.

Regarding variations of synchrony in practice, the network
typically exhibits predictable latency, but there are factors such
as message loss requiring retries, congestion causing queuing,
and network/route reconfiguration.

To summarize the content of the System Model:
• In the network aspect, considerations include reliable,

fair-loss, and arbitrary behavior.
• In terms of nodes, considerations include crash-stop,

crash recovery, and the Byzantine Generals problem.
• Timing considerations encompass synchronous, partially

synchronous, and asynchronous behaviors.
The key takeaway is that before studying distributed systems,
it’s essential to understand the assumptions underlying the
system model thoroughly. These assumptions play a critical
role in the design, analysis, and performance of distributed
systems.

In distributed systems, availability can generally be cate-
gorized into two types: Service-Level Objective (SLO) and
Service-Level Agreement (SLA). Achieving high availability
implies having a high degree of fault tolerance. In this context,
”failure” may render the entire system non-functional, while
”fault” may cause only a portion of the system to become non-
functional. Faults can further be categorized into node faults
and network faults. Fault tolerance ensures that the system can
continue to operate even in the presence of faults.

As for failure detectors, there are two main types:
• Failure detectors: These algorithms detect whether an-

other node is faulty or not.
• Perfect failure detectors: They label a node as faulty

if and only if it has crashed, providing accurate fault
detection.

These concepts and mechanisms are essential for ensuring the
availability and reliability of distributed systems.

Next, let’s discuss time, clocks, and the ordering of events.
Firstly, we need to address how to handle time discrepancies
between different nodes. In distributed systems, we often
need to measure time and utilize scheduling, timeouts, failure
detectors, retry timers, performance measurements, statistical
profiling (logging information), log files/databases (recording
when events occur), and data with time-limited validity (such
as cache entries). Then, we need to determine the order of
events across multiple nodes.

Regarding internal clocks within nodes, there are two types:
physical clocks and logical clocks. In distributed systems,
clocks do not simply measure time in seconds but determine
the order of events based on their occurrence. Speaking of
physical clocks, we cannot overlook the Quartz clock. Its
operation principle involves counting the number of cycles to
measure elapsed time. However, in distributed systems where
precise timing is crucial, the Quartz clock may not be the best
tool due to its susceptibility to various factors like temperature.
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One common issue with Quartz clocks is drift, where one
clock runs slightly fast while the other runs slow.

In practice, more precise timing tools like atomic clocks
are commonly used. Other timing tools include GPS as a
time source, which calculates position from the speed-of-light
delay between satellites and the ground. Another timing tool
is Coordinated Universal Time (UTC), but it faces the issue
of the Earth’s rotational speed not being constant. All these
timing tools also encounter the issue of leap seconds, where
there may be an extra or missing second in timekeeping. As
for how computers represent timestamps, there are standards
such as Unix time and ISO 8601. When faced with leap
seconds, most software implementations typically choose to
ignore them.

Livelock and deadlock are two important concepts in dis-
tributed systems. Livelock occurs when a program keeps
switching between several states in a loop, unable to make
progress (similar to two pedestrians continuously yielding to
each other but both choosing to step back at the same time),
while deadlock happens when processes are waiting for each
other to release a resource lock, resulting in a standstill. Clock
synchronization is affected by the issue of clock drift, where
clock skew represents the difference between two clocks at a
specific point in time. Two common protocols used in clock
synchronization are the Network Time Protocol (NTP) and the
Precision Time Protocol (PTP). Regarding atomic and time-
of-day clocks, a time-of-day clock starts counting from a fixed
point in time (e.g., January 1, 1970), and timestamps can be
compared across nodes. On the other hand, monotonic clocks
measure time relative to an arbitrary starting point.

Fig. 3: Estimating time over a network (The round-trip
network delay is equivalent to (t4 - t1) - (t3 - t2), but in

practice, we don’t know the time spent on the request and
response.)

In the final part of this document, we will delve deeper into
broadcast protocols and logical time. In practical distributed
systems, it’s challenging to define the true passage of time
(physical timestamps inconsistent with causality), as even
with synced clocks, t2 ¡ t1 is possible, but the timestamp
order is inconsistent with the expected order. Next, we’ll
explain the difference between logical clocks and physical
clocks. Physical clocks count the number of seconds elapsed,
while logical clocks count the number of events occurred.
Although physical timestamps are useful in various application

scenarios, they may be inconsistent with causality. Therefore,
in practice, we use logical clocks (which don’t have a direct
relationship to physical time) to capture causal dependencies.
We will then introduce two different types of logical clocks,
namely Lamport clocks and Vector clocks.

The Lamport clocks algorithm was first proposed in 1978.
In this algorithm, each node initializes its local variable t to
0. Whenever an event occurs at a node, its local variable t
is incremented by 1. Then, the variable t is transmitted over
the underlying network link in the form of (t,m), where m
is the message associated with the event. Upon receiving the
transmitted t value, other nodes compare it with their own local
variable t and take the maximum value. Subsequently, they
increment their local t by 1 and continue to propagate it in the
form of (t,m). However, the Lamport clocks algorithm suffers
from a significant limitation: L(a)<L(b) does not necessarily
imply that event a occurred before event b. Event a and event
b could occur simultaneously or event a could precede event b.
Both cases are possible. Below is a simple example of Lamport
clocks:

Fig. 4: Lamport clocks example

In Vector clocks, we assume there are a total of n nodes in
the system, and we use V(a) to represent the Vector timestamp
of event a, where ti represents the number of events observed
by node Ni. Each node has a current vector timestamp variable
T (each node has a separate counter for every node for the
number of events occurred). When an event occurs at node
Ni, its variable Ti is incremented by 1. Subsequently, the
current vector timestamp is attached to each message, and the
receiving node merges the message vector into its local vector.
Below is a simple example of Vector clocks:

Fig. 5: Vector clocks example

After explaining the two different types of logical clocks,
the next topic we are going to cover is broadcast protocols.
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Broadcast protocols (multicast) are a form of group commu-
nication, where when one node sends a message, all nodes in
this group will receive this message. The set of group members
may be fixed (static) or dynamic, and if a node disappears,
other nodes can immediately compensate. Broadcast protocols
are more general than IP multicast. The system model con-
structed by broadcast protocols can be best effort (may drop
messages) or reliable (non-faulty nodes deliver every message,
by retransmitting dropped messages). Alternatively, the system
model can belong to an asynchronous/partially synchronous
timing model (with no upper bound on message latency).

Fig. 6: Receiving versus delivering

The reliable broadcast comes in various forms, including
FIFO broadcast, Causal broadcast, Total order broadcast, and
FIFO-total order broadcast.In FIFO broadcast, it is assumed
that m1 and m2 are broadcast by the same node. In this
scenario, m1 must be delivered before m2, but there is no
guarantee about the order in which they might arrive. Next,
Casual broadcast is similar to FIFO broadcast. Here, m1 must
also be delivered before m2. Following that is Total order
broadcast. If m1 is delivered before m2 at one node, then m1

must be delivered before m2 at all nodes (everyone delivers
some order, but may not send order). Finally, FIFO-total order
broadcast combines FIFO broadcast and total order broadcast.

Fig. 7: Relationships between broadcast models

In addition to Broadcast protocols, this document will also

introduce Gossip protocols, which are highly useful when
broadcasting to a large number of nodes. The core idea is
that when a node receives a message for the first time, it then
forwards it to 3 other nodes chosen randomly. In simple terms,
when a node receives data, it disseminates it to a specific
number of other nodes, allowing other nodes to have backup
data. However, Gossip protocols still have some issues to
address. For instance, how to improve the success rate of
searches when malicious nodes exist in the network, and how
to ensure that all nodes successfully receive the message with
the fewest hops possible.

IV. CONCLUSION

In conclusion, understanding the intricacies of distributed
systems is essential for designing robust and efficient network
structures. By delving into topics such as availability, fault
tolerance, the Byzantine Generals Problem, logical clocks,
scaling challenges, and common pitfalls, one can navigate the
complexities of distributed systems with more clarity. It is
crucial to address issues like false assumptions, replication
challenges, and overcomplication in design to ensure the
successful implementation of distributed systems. Embracing
the nuances of distributed systems can lead to improved
system performance, fault tolerance, and scalability in modern
network architectures.
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