
NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 1

Poisoning Defense in Federated Learning:
Attack Problems, Related Works and Proposed

Defense Mechanism
Qi Xiang Zhang

Institute of Information Management,
National Yang Ming Chiao Tung University, Taiwan

Abstract—This document describes common poisoning attacks
that occur in the process of federated learning, and I propose
a new defense mechanism in the document that combines the
advantages of existing defense methods. First, we will understand
what federated learning is and its vulnerabilities. Next, we will
focus on how attackers carry out poisoning attacks during the
learning process of a global model. Then, we will discuss four
current defense methods against poisoning attacks. Finally, I will
introduce the proposed new defense mechanism, briefly mention
the evaluation environment settings for future implementation,
and provide a simple conclusion.

Index Terms—Federated learning, cosine similarity, poisoning
attack, blockchain, distributed system, homomorphic encryption,
edge computing, security and protection, privacy.

I. INTRODUCTION

DAta silos refer to information that belongs exclusively to
individual organizations, remains hidden from external

access, and, as a result, lacks effective communication and
collaboration between data silos, hindering comprehensive
data analysis and utilization.

Traditional machine learning, which trains data sets cen-
trally, encounters the problem of data silos. As problems
become more complex, the sources of training data must
become increasingly diverse. Therefore, cross-organizational
data integration is necessary. To address the issue of data being
inaccessible between different organizations, it is crucial to
ensure data privacy when sharing information. This led to the
emergence of a new machine learning training method known
as federated learning.

In a typical federated learning framework, there is a central-
ized server and multiple clients. The learning process begins
with the server providing a model to these clients, allowing
them to train the model using their own local data. After
training their respective models, these clients return their
model parameters to the server. The server then updates the
new model using predefined aggregation rules and provides the
updated model to the clients for further training. This process
continues until the model converges, marking the end of the
training process. Throughout the entire training process, the
local training data owned by the clients is not transmitted to
the server, ensuring the privacy of the client-owned data.

A. Types of Federated Learning

The classification of federated learning into horizontally
federated learning (HFL), vertically federated learning (VFL),
and federated transfer learning (FTL) is based on [1], which
categorizes federated learning according to the characteristics
of the data owned by participants and the distribution of
samples.

If the datasets of different participants have similar features,
the federated learning falls into the category of HFL. HFL
can further be divided into HFL to businesses (H2B) and
HFL to consumers (H2C). H2B typically involves a smaller
number of participants who often possess more computational
power and a larger amount of data. On the other hand,
H2C has a larger number of participants but lacks sufficient
computational capacity and has less data.

If the datasets from the same participants appear repeat-
edly and have different data features, the federated learning
belongs to VFL. This type typically occurs when different
organizations have the same data records but with different
field attributes.

If the datasets of participants in federated learning rarely
overlap and have minimal shared data features, then the
federated learning falls into the category of FTL.

Fig. 1: Basic Federated Learning Framework
(image source: wikipedia.org)

B. Vulnerabilities of Federated Learning

Here’s a brief introduction to the vulnerabilities of federated
learning: Attackers in federated learning can come from either
internal or external sources. Internal attackers include clients



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 2

participating in model training and the server responsible for
aggregating model parameters. External attackers encompass
any external users who may eavesdrop on the communication
channel between clients and the server.

The types of attacks on federated learning can be catego-
rized into poisoning attacks and inference attacks. Poisoning
attacks can be further divided into data poisoning attacks and
model poisoning attacks. I will provide a brief introduction to
these attacks:

• Data Poisoning Attack: In a data poisoning attack, an
adversary injects malicious data or modifies genuine data
within a participant’s local dataset. These poisoned data
points can influence the training process and potentially
compromise the global model’s integrity.

• Model Poisoning Attack: In a model poisoning attack,
the attacker manipulates a participant’s local model be-
fore aggregating it with others to form the global model.
This can lead to the global model being controlled or
influenced by the attacker.

• Inference Attack: In an inference attack, an adversary
attempts to gain insights into a model’s behavior or
extract sensitive information by making inferences from
the global model’s outputs.

These attacks pose significant security and privacy chal-
lenges in federated learning, and defense mechanisms are
necessary to mitigate their impact. In the second part, my
primary focus is on the attack type known as the poisoning
attack in the context of federated learning. The more complex
inference attack is not within the scope of our discussion.

II. THE ATTACK PROBLEM

In this paragraph, we will know real-life examples of
poisoning attacks and the different types of poisoning at-
tacks initiated by attackers for various purposes. We will
also explore the differences and attack complexities between
untargeted attacks and targeted attacks.

Untargeted attacks launched by attackers aim to reduce
the overall accuracy of the federated learning model without
targeting any specific data labels. In contrast, targeted attacks
are different from untargeted attacks, as attackers specifically
target the labels of certain data, causing the federated learning
model to incorrectly identify a data’s label as the target label.
An actual example of a targeted attack is the label-flipping
attack. In terms of the difficulty of execution, targeted attacks
are generally more challenging to execute than untargeted
attacks because they involve the attacker’s specific objectives.

In the previous paragraphs, we learned that poisoning at-
tacks can be divided into data poisoning attacks and model
poisoning attacks. However, in reality, the differences between
these two types are not substantial. In both types, malicious
participants upload incorrect model parameters to the server
after completing local model training, resulting in a significant
decrease in the overall performance of federated learning
models. If we were to emphasize a difference between the two,
it would be that data poisoning attacks involve contaminated
training data, whereas in model poisoning attacks, the training
data remains uncontaminated, but participants maliciously

adjust the model parameters before uploading them to the
server.

Finally, let’s illustrate a simple poisoning attack scenario.
Suppose we want to train a model to recognize hand-written
digits 0 to 9 using the MNIST dataset through federated learn-
ing. In this setup, we have a server responsible for providing
the initial model and many clients for local training. However,
among these clients, some are malicious attackers who aim
to make the trained model misclassify hand-written digit 1 as
digit 7. During the training process, these malicious clients use
incorrectly labeled data for training. Since the server cannot
actively filter out malicious model parameters uploaded by
clients, such attacks are often successful. This type of attack
falls under the category of target attacks, specifically a label-
flipping attack. In the next paragraph, we will explore some
defense methods that may be effective in countering poisoning
attacks.

III. RELATED WORKS

Here are some methods for defending against poisoning
attacks in federated learning. In this paragraph, we will discuss
their operational principles and potential issues one by one.

A. FoolsGold [3]

A Sybil Attack occurs when a system allows users to freely
enter and exit. Attackers can create a large number of mali-
cious users and introduce them into the system, attempting to
disrupt the normal operation of the system. Broadly speaking,
a Sybil Attack can also be considered a type of poisoning
attack.

FoolsGold is a novel method for countering Sybil Attacks.
The authors adjust the learning rate of the client’s parameter
updates based on the similarity between the model updates
uploaded by local clients. Since attackers often share the same
attack objectives, the model updates they upload tend to be
more similar than expected. By calculating the similarity of
parameter updates, it becomes possible to eliminate attackers
by adjusting the learning rate, without making assumptions
about the actual number of attackers.

Here are some assumptions made by the authors during the
design of the FoolsGold algorithm:

1) The server-side cannot be inherently malicious.
2) There must be at least one honest local client that

updates the model parameters honestly.
3) The locally uploaded model parameter updates are not

obfuscated, allowing the server-side to calculate the
similarity of parameter updates.

4) The attackers’ goal is to misclassify a specific class as
a target class without affecting the recognition of other
classes.

5) The federated learning model uses Stochastic Gradient
Descent (SGD) as the optimization algorithm for param-
eter updates.

FoolsGold distinguishes between malicious and honest local
clients by examining the similarity in the direction of model
parameter updates. As mentioned earlier, attackers typically
share a common attack goal, resulting in their uploaded model



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 3

parameter update directions being quite similar. After calcu-
lating the update similarity, FoolsGold adjusts the learning
rates based on the magnitude of the similarity. Local clients
with higher update similarity will have smaller learning rates,
reducing their influence on the overall model. FoolsGold
considers both the current update similarity and historical
update similarity information compared to other clients when
adjusting the learning rates.

FoolsGold uses cosine similarity for calculating model
parameter update similarity. This choice is made to avoid being
influenced by the vector size, and when calculating cosine
similarity, it selectively picks important indicator parameters,
obtainable through the weight of the preceding layer in the
classification layer. The resulting cosine similarity values fall
within the range of -1 to 1. However, this approach presents
potential issues. It cannot guarantee that high cosine similarity
necessarily indicates malicious local clients. There is a risk of
inadvertently penalizing honest local clients by reducing their
learning rates. Moreover, the distribution of cosine similarity
values may be too dispersed, making it challenging to identify
malicious local clients. Therefore, FoolsGold introduces the
Pardoning method to prevent the unintentional penalization
of honest local clients. It achieves this by readjusting cosine
similarity, ensuring that at least one local client can assist in
updating model parameters. Additionally, FoolsGold applies
the logit function to transform the calculated cosine similarity
values. The transformation concentrates the value distribution
at both extremes, making it easier for FoolsGold to distinguish
malicious local clients.

Before evaluating the pros and cons of the FoolsGold
algorithm, it’s important to provide additional context on the
rules followed by the authors during its design:

1) When the system is not under attack, FoolsGold should
not affect the performance of federated learning.

2) FoolsGold should reduce the contributions (by lowering
the learning rates) of clients with similar parameter
update directions.

3) FoolsGold should be resilient against increasing poison-
ing attacks launched by attackers.

4) FoolsGold should be able to distinguish between param-
eter updates that appear malicious but are actually from
honest clients. (FoolsGold introduces ”pardoning” to
address misidentification issues and readjust the cosine
similarity for honest clients.)

5) FoolsGold should not rely on specific assumptions about
the clients and attackers, such as predefining the actual
number of attackers.

With these rules in mind, we can now assess the advantages
and disadvantages of the FoolsGold algorithm.

From the evaluation of FoolsGold presented by the authors
in the paper, it’s evident that FoolsGold struggles to handle
scenarios where there is only one attacker. This difficulty
arises because FoolsGold calculates cosine similarity pairwise
between clients. When there is only one attacker, it becomes
challenging to determine the appropriate cosine similarity
without a reference point.

Furthermore, [2] points out that cosine similarity-based
poisoning defense is fragile because attackers can specifically

target a few neurons in a layer of the model, effectively
evading cosine similarity calculations. This type of attack is
known as a layer replacement attack (LRA).

These observations highlight potential limitations and vul-
nerabilities of the FoolsGold algorithm when dealing with
single attackers and layer replacement attacks.

B. LoMar [4]

Local Malicious Factor (LoMar) is a two-stage defense
method against poisoning attacks. The authors argue that ex-
isting defense methods only treat malicious updates as global
anomalies in the Federated Learning (FL) system, without
analyzing the feature of malicious remote updates in local
trained model parameters. Therefore, they propose the LoMar
algorithm with the aim of detecting abnormal parameter up-
dates in Federated Learning from a local perspective rather
than from the traditional global perspective.

LoMar’s defense consists of two stages. The first stage
involves calculating a malicious client coefficient, and the
second stage determines a threshold to specify the range within
which the malicious client coefficient should fall to be consid-
ered malicious. The LoMar defense method ultimately outputs
a binary factor (0 or 1) to filter out parameter updates from
malicious clients. If a client is determined to be malicious,
the binary factor is set to 0, rendering the parameter updates
uploaded by that client during local training invalid.

LoMar uses Kernel Density Estimation (KDE) to estimate
the malicious client coefficient. In the preprocessing stage,
parameter updates from remote clients are divided based
on the dimensions of parameter features. Subsequently, the
updates are grouped based on the output labels, and Kernel
Density Estimation is performed on each output label. The
Kernel Density Estimation values for each label are multiplied
together, generating a numerical output. This output is then
compared with the results of Kernel Density Estimation for
parameter updates in the vicinity to calculate the malicious
client coefficient.

While the authors of LoMar demonstrated in their paper,
using ROC curves, that LoMar has a strong capability to
detect malicious parameter updates compared to other poi-
soning attack defense algorithms, the process of calculating
the malicious client coefficient is inherently uncertain. There
are challenges, such as the choice of kernel function for
KDE estimation, that introduce uncertainties. Moreover, in the
typical federated learning framework, clients often upload only
the minimal necessary model parameter updates. This means
that estimating the actual malicious client coefficient using
KDE may not always yield accurate results.

C. FLCert [5]

FLCert is an embedded federated learning framework de-
signed to resist parameter updates from a certain number
of malicious clients. The authors of this paper argue that
existing defense methods against poisoning attacks fall into the
categories of Byzantine-robust or malicious client detection.
To address this issue, they introduce a new defense method
called FLCert. In FLCert, clients participating in federated



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 4

learning are first divided into groups. Using existing federated
learning methods, clients within the same group learn the same
global model. The output labels for the global model learned
by clients within a group are determined through a voting
process among the clients in that group.

FLCert offers two different client grouping approaches:

• FLCert-P, which involves random sampling of clients
for grouping, with the possibility of duplicate selections.

• FLCert-D, where clients are grouped based on specific
rules, and duplicate selections are not allowed.

FLCert introduces this novel approach to enhance the se-
curity and robustness of federated learning in the presence of
malicious clients.

FLCert’s success in defending against poisoning attacks
from malicious clients can be attributed to its client grouping
strategy. By dividing all clients into groups, malicious clients
are effectively distributed among different groups. This dis-
persion results in a significant reduction in the overall impact
of malicious clients on the global model. Furthermore, FLCert
employs an approach where the final model parameter updates
to be uploaded are determined through group voting. This
means that unless the majority of clients within a group are
malicious (comprising over half of the total clients in that
group), the uploaded model parameter updates will not be
malicious. This design effectively safeguards the federated
learning process against poisoning attacks.

Despite the successful defense against poisoning attacks
from malicious clients through FLCert’s client grouping strat-
egy, it still faces some significant challenges. One of the
issues is when there are too many groups, which results in
a scarcity of clients within each group. During the training of
the global model within each group, the available training data
becomes increasingly limited. This approach may expedite
the global model’s training, but the ultimate performance of
the aggregated global model may not be optimal. Another
challenge is estimating the maximum number of tolerated
malicious clients within each group. This issue arises in
FLCert-P, which involves the possibility of repeatedly sam-
pling clients for grouping. While the authors have proposed
a theoretical framework for estimation, there is still some
uncertainty surrounding the accuracy of this estimation in
practice.

D. FLChain [6]

Blockchain is a special type of database, also known as a
decentralized digital ledger, maintained by numerous nodes
distributed across the globe. Blockchain data is organized into
blocks, arranged in chronological order, and secured through
cryptography. While blockchain technology was initially used
for recording cryptocurrency transactions, it is equally suitable
for recording various other types of digital data. Each block
in a blockchain contains the hash value of the previous
block, meaning that to alter any single block, all subsequent
blocks must be modified. This task is highly challenging
from a technical perspective, ensuring the immutability of the
blockchain.

The authors of FLChain recognized that blockchain pos-
sesses features such as decentralization, immutability, and
traceability. Consequently, they integrated federated learning
with blockchain technology to create a framework called
FLChain. Their aim is to effectively address the issues en-
countered by federated learning in edge computing, as listed
below:

1) Users must place complete trust in the server responsible
for aggregating model parameters.

2) The communication process for transmitting model up-
date parameters from clients to the server is vulnerable.

3) Federated learning relies on a single server, and if that
server is attacked, the entire federated learning training
process comes to a halt.

4) A single server may not be capable of handling local
data from millions of client devices.

However, while FLChain addresses some of the issues in
federated learning, it also faces both internal and external
threats. Internal threats include the possibility that the server
responsible for aggregating gradient updates can reconstruct
the original data based on these updates’ gradient. Addition-
ally, malicious clients may learn the data’s structure from
global model updates without the knowledge of other clients
and the server. External threats involve attackers attempting
to influence the training objectives of federated learning by
modifying the features of training data or using contaminated
training data. During the training process, attackers can exploit
communication channels between the server and clients to
attempt to obtain clients’ personal information. Furthermore,
external eavesdroppers may potentially control the aggregation
process of model updates without the server’s authorization.

Regarding the mentioned issues, FLChain’s authors propose
several potential solutions:

1) Data perturbation techniques can be employed to ensure
the safety of data information, thereby encouraging users
to participate in training. This is somewhat similar to
data obfuscation, making it more challenging to reverse
the original data.

2) Attack detection mechanisms can be integrated into the
server responsible for aggregating model parameters.
These mechanisms can assess the contribution weights
of each client to filter out malicious clients.

3) Ensuring the security and privacy of wireless communi-
cation channels can be achieved through data encryption,
communication authorization, and smart contracts on the
blockchain.

These solutions aim to address the identified threats and
enhance the overall security and privacy of FLChain.

While FLChain leverages many advantages of blockchain
technology, it also introduces some of the existing draw-
backs of blockchain. These include the high energy and
time consumption associated with blockchain operations and
the presence of various types of attacks against blockchain.
Additionally, FLChain participants are required to download
all historical model learning records, which poses a challenge
in terms of storage resources. To attract more participants, a



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 5

well-designed participation incentive mechanism is needed to
harness the full potential of federated learning.

One limitation of this paper is that it presents the conceptual
framework of FLChain but lacks real-world implementation
with actual data. As a result, it’s challenging to guarantee the
effective operation of FLChain without empirical evidence.

In practical applications, it’s essential to explore how
FLChain performs and addresses its inherent challenges while
considering the trade-offs between the benefits and limitations
of blockchain technology in federated learning.

IV. PROPOSED DEFENSE MECHANISM

In the previous paragraph, we discussed four different
methods for defending against poisoning attacks, which can
be simply categorized into two types. The first type involves
statistical approaches, such as calculating cosine similarity or
using KDE estimation to identify and exclude outliers in the
model parameter updates. The second type employs specific
clustering rules to categorize clients participating in federated
learning into different groups. By utilizing clustering, the goal
is to mitigate the impact of malicious clients when aggregating
new parameters for the global model.

In these two categories, I choose to propose a new de-
fense method based on specific clustering rules. This choice
is motivated by the fact that defense methods relying on
cosine similarity have been deemed vulnerable in [2], and
KDE estimation methods may introduce estimation errors in
statistics due to the use of different kernel functions. In the
following, I will provide a detailed explanation of the design
details and the operational workflow of the proposed defense
method.

A. Problem Formulation

In addition to the two types of poisoning attacks mentioned
earlier, in many papers I have reviewed, there is often an as-
sumption that the server is semi-trusted. The server, apart from
providing a global model for client training and aggregating
model parameters uploaded by clients, is also curious about
the local data owned by clients.

Therefore, we cannot guarantee that the server will not
attempt to reconstruct sensitive information implicit in clients’
local data through inference attacks using the parameters
uploaded by clients. As a result, I will propose a defense
strategy later on that adopts an approach similar to a zero-
trust security mechanism.

B. Defense Sstrategy

1) When each client initially participates in federated learn-
ing for global model parameter training, the system will
assign a unique user ID to each client. The system
will then group clients based on the assigned user ID.
In the worst-case scenario, each group will have at
least one malicious client. (In my initial concept, I
would choose to utilize a hash function to numerically
transform user IDs, consequently assigning all clients
to different groups. Moreover, each client is prohibited

Fig. 2: Assign user ID and form different group.

from being simultaneously assigned to more than two
groups, thus eliminating the issue of resampling.)

2) Subsequently, there will be a key center in the system
responsible for assisting in distributing public keys and
secret key shares to both servers and each group. This
ensures that the communication channels between the
servers and groups are protected through homomorphic
encryption. Homomorphic encryption allows certain op-
erations, such as addition and multiplication, to be
performed on cipher text without fully decrypting it. (In
my initial concept, because the server is not entirely
trustworthy, the inclusion of a key center is necessary
to provide additional security assurances. In a federated
learning system, the key center serves as a completely
trusted entity.)

Fig. 3: Distribute public keys and secret key shares.

3) After the key center completes the task of distributing
public keys and secret key shares, a group composed of
many servers will use the obtained keys to homomorphi-
cally encrypt the initial global model parameters to be
trained. Subsequently, the encrypted initial global model
parameters are sent down to different client groups.

Fig. 4: Send the encrypted initial model parameters.

4) Upon receiving the encrypted global model parameters,
considering that individual clients’ computing capabili-



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 6

ties may be insufficient to simultaneously handle local
model training and encryption/decryption tasks, clients
collaborate by forming client groups to collectively
decrypt the global model parameters. After decryption
is complete, each client uses its respective local data for
local training.

Fig. 5: Decrypt model parameters and local training.

5) After completing local training with their respective
local data, clients within their client groups use the
basic federated model aggregation method, FedAvg,
to determine the globally trained model parameters to
be uploaded. Once each client group aggregates the
globally trained model parameters for upload, the client
group consolidates the computational resources of the
clients within the group. Together, they homomorphi-
cally encrypt the locally trained global model parameters
before uploading them back to the server group.

Fig. 6: Generate model parameters and send back.

6) Upon receiving the encrypted locally trained model pa-
rameters uploaded by the client group, the server group
aggregates all secret key shares owned by individual
servers to collectively decrypt the model parameters
from each client group. After decrypting all the model
parameters, a majority voting process is initiated among
all servers in the server group to exclude a certain
proportion of relatively anomalous model parameter up-
dates. (In my initial concept, because complete trust in a
single server is not possible, I aim to ensure that a single
server cannot decrypt and view the encrypted uploaded
model parameters through a key-splitting mechanism.)

7) After excluding a certain proportion of relatively anoma-
lous model parameter updates, the server group em-
ploys the basic federated learning aggregation method,
FedAvg, to aggregate new global model parameters.
Once the aggregation is complete, the new global model
parameters are homomorphically encrypted and returned

Fig. 7: Eliminate anomalous model parameters.

by the server group to different client groups for the next
round of local model parameter training.

Fig. 8: Generate new model parameters and send back.

8) This iterative process of transmitting model parameters
for the aggregation of new model parameters will con-
tinue until the entire model converges. (turn back to
step.4 and restart local training process)

C. The weaknesses of Cosine Similarity

1) The cosine similarity is effective only with multidimen-
sional sparse model updates. The adversary can induce
malicious layers in-between the model update, which
would impact the performance of the model, without
deviating the direction.

2) For any two vector updates P and Q, there exists
multiple vectors R, around the conic axis of P, such
that, the cosine similarity of P and Q is equal to the
cosine similarity of P and R. The adversary can craft
a malicious vector which looks very similar to trusted
updates.

V. EVALUATION ENVIRONMENT

In this paragraph, I will share some experimental settings
for evaluating the mechanism I proposed to defend against
poisoning attacks in the future. This includes the setup of the
system, the dataset for testing, the types of expected attacks,
and performance metrics for evaluation.

• System: I will use the Python PyTorch package to set up
the entire Federated Learning environment. Each partici-
pating client in the training will be a lightweight thread,
and they will individually use local data for training. In
the entire system, I assume a total of 50 clients, with 20%
to 40% of them being malicious.



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 7

• Dataset: For testing the dataset, I have chosen three
commonly referenced datasets from the paper. These
include the handwritten digit recognition dataset MNIST,
the network intrusion detection dataset KDDCup99, and
the product description dataset Amazon.

• Poisoning Attack: For poisoning attacks, I plan to im-
plement both data poisoning attacks and model poisoning
attacks separately.

• Compared Defense: In the comparative defense methods
section, I will choose to evaluate the effectiveness of
FoolsGold, FLCert, and LoMar, alongside the defense
method I proposed, in defending against poisoning at-
tacks.

• Evaluation Baseline: For the evaluation baseline, I will
use FedAvg as the global model parameter update ag-
gregation rule, assuming a scenario where there are no
malicious clients, to determine the final training results
of the model.

• Evaluation Metrics: For evaluating the performance
of defense methods, I have selected attack success
rate(ASR), source label accuracy, overall accuracy, and
test loss as the four performance evaluation metrics.

As for the detailed attack scenario, I haven’t thought so
deeply into it yet as I haven’t conducted any actual experi-
ments in this area.

VI. EXPECTED RESULT

Although I haven’t conducted actual experiments based on
the proposed poisoning attack defense mechanisms, in this
paragraph, I will still share some anticipated outcomes of the
defense mechanisms I have proposed.

• Improvement in Trust between Server and Client:
Addressing the trust issue between the server and client
by implementing homomorphic encryption on the server
side. This ensures that the server cannot directly observe
the original parameter updates from the client, thus proac-
tively preventing inference attacks from the server.

• Enhancement of Communication Security through
Homomorphic Encryption: Reinforcing the communi-
cation channel between clients and the server by employ-
ing homomorphic encryption. This prevents adversaries
from eavesdropping and attempting to steal any sensitive
information through monitoring. Malicious clients are
also unable to compromise the sensitive information of
other client groups without knowledge of their respective
group keys.

• Establishment of Server Groups for Robustness: Miti-
gating historical issues in federated learning architectures
by forming server groups consisting of multiple servers.
This prevents a single server responsible for aggregating
model parameters from becoming a point of failure due
to attacks, ensuring the continued operation of the entire
system.

• Addressing Scalability Challenges through Client
Grouping and Multiple Servers: Resolving scalability
challenges in federated learning by dividing clients into
multiple groups. Each group only needs to upload a single

model update parameter. Combining multiple servers alle-
viates the workload on a single server, particularly when
aggregating an increasing number of model parameters
uploaded by clients. This approach significantly improves
the overall system efficiency.

Fig. 9: Expected Result

VII. CONCLUSION AND FUTURE WORK

When contemplating a new defense method against poison-
ing attacks, the most challenging aspect is not completing
the reading of all relevant papers, but rather, after reading
them, systematically pondering aspects that the authors may
have overlooked. Identifying those areas as potential areas for
improvement, and gradually conceiving a new defense method
based on those considerations, proves to be a complex task.

Initially, due to a limited exposure to papers in the Federated
Learning domain, it was challenging to discern aspects that
authors might have neglected, leading to a perception that
their methods were flawless. However, through continuous
exploration of related literature, I have gradually developed
the ability to critically evaluate the strengths and weaknesses
of a paper.

In this document, the new defense method I propose is
not solely my own achievement; rather, it is a synthesis
that draws inspiration from the framework presented in the
ShieldFL[7] paper and incorporates some characteristics from
the previously mentioned FLCert[5] and FLChain[6]. This
integration allowed me to devise a novel defense method aimed
at addressing common challenges in federated learning.

Although I have not yet conducted experiments to assess
the actual effectiveness of the proposed method or determine
whether it surpasses existing defenses against poisoning at-
tacks, I have undertaken feasibility research while writing
this document. Hence, I am confident that in the future,
practical experiments can be conducted smoothly following the
experimental design outlined in the document for a thorough
evaluation.

ACKNOWLEDGMENTS

This document was originally written in Chinese and trans-
lated into English using ChatGPT and Grammarly. The content
is based on information from night papers related to federated
learning, some of which have been cited thousands of times.
I appreciate the authors of these papers for providing me
with a deeper understanding of the issues related to federated
learning.



NETWORK ATTACKS DEFENSES, VOL. 1, NO. 2, DECEMBER 2023 8

REFERENCES

[1] L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
arXiv preprint arXiv:2003.02133, 2020.

[2] H. Kasyap and S. Tripathy, “Hidden vulnerabilities in cosine similarity
based poisoning defense,” in 2022 56th Annual Conference on Informa-
tion Sciences and Systems (CISS). IEEE, 2022, pp. 263–268.

[3] C. Fung, C. J. Yoon, and I. Beschastnikh, “Mitigating sybils in federated
learning poisoning,” arXiv preprint arXiv:1808.04866, 2018.

[4] X. Li, Z. Qu, S. Zhao, B. Tang, Z. Lu, and Y. Liu, “Lomar: A local defense
against poisoning attack on federated learning,” IEEE Transactions on
Dependable and Secure Computing, 2021.

[5] X. Cao, Z. Zhang, J. Jia, and N. Z. Gong, “Flcert: Provably secure
federated learning against poisoning attacks,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3691–3705, 2022.

[6] D. C. Nguyen, M. Ding, Q.-V. Pham, P. N. Pathirana, L. B. Le,
A. Seneviratne, J. Li, D. Niyato, and H. V. Poor, “Federated learning
meets blockchain in edge computing: Opportunities and challenges,”
IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 806–12 825, 2021.

[7] Z. Ma, J. Ma, Y. Miao, Y. Li, and R. H. Deng, “Shieldfl: Mitigating
model poisoning attacks in privacy-preserving federated learning,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 1639–
1654, 2022.

[8] A. M. Jubrin, I. Izegbu, and O. S. Adebayo, “Fully homomorphic
encryption: An antidote to cloud data security and privacy concerns,”
in 2019 15th International Conference on Electronics, Computer and
Computation (ICECCO). IEEE, 2019, pp. 1–6.

[9] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50–60, 2020.

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Qi Xiang Zhang received the BBA degree from the
Department of Information Management, National
Central University of Taiwan (NCU), in 2023. He
is currently pursuing the MS degree with the In-
stitute of Information Management, National Yang
Ming Chiao Tung University of Taiwan, NYCU. His
main research interests include data mining, machine
learning security and privacy, and network security.


